【題目】如圖,在Rt△AOB中,∠AOB=90°,OA=3,OB=2,將Rt△AOB繞點O順時針旋轉(zhuǎn)90°后得Rt△FOE,將線段EF繞點E逆時針旋轉(zhuǎn)90°后得線段ED,分別以O(shè),E為圓心,OA、ED長為半徑畫弧AF和弧DF,連接AD,則圖中陰影部分面積是 .
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知平行四邊形中,對角線交于點, 是延長線上的點,且是等邊三角形.
(1)求證:四邊形是菱形;
(2)若,求證:四邊形是正方形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,分別以點A和點B為圓心,以相同的長(大于AB)為半徑作弧,兩弧相交于點M和點N,作直線MN交AB于點D,交BC于點E.若AC=3,AB=5,則DE等于( )
A. 2 B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形MNPQ網(wǎng)格中,每個小方格的邊長都相等,正方形ABCD的頂點在正方形MNPQ的小方格頂點上.
(1)設(shè)正方形MNPQ網(wǎng)格內(nèi)的每個小方格的邊長為1,求:
①△ABQ,△BCM,△CDN,△ADP的面積;
②正方形ABCD的面積;
(2)設(shè)MB=a,BQ=b,利用這個圖形中的直角三角形和正方形的面積關(guān)系,你能驗證勾股定理嗎?相信你能給出簡明的推理過程.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(閱讀理解)
“若滿足,求的值”
解:設(shè),則,
所以
(解決問題)
(1)若滿足,求的值.
(2)若滿足,求的值.
(3)如圖,正方形的邊長為,,長方形的面積是500,四邊形和都是正方形,是長方形,求圖中陰影部分的面積(結(jié)果必須是一個具體的數(shù)值).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ABC=90°,AB=8,BC=6,點D為AC邊上的動點,點D從點C出發(fā),沿邊CA向點A運動,當(dāng)運動到點A時停止,若設(shè)點D運動的時間為t秒.點D運動的速度為每秒1個單位長度.
(1)當(dāng)t=2時,CD= , AD= ;
(2)求當(dāng)t為何值時,△CBD是直角三角形,說明理由;
(3)求當(dāng)t為何值時,△CBD是以BD或CD為底的等腰三角形?并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,點P是弦AC上一動點(不與A,C重合),過點P作PE⊥AB,垂足為E,射線EP交 于點F,交過點C的切線于點D.
(1)求證:DC=DP;
(2)若直徑AB=12cm,∠CAB=30°, ①當(dāng)E是半徑OA中點時,切線長DC=cm:
②當(dāng)AE=cm時,以A,O,C,F(xiàn)為頂點的四邊形是菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法中,不正確的是( )
A. 平方等于本身的數(shù)只有和 B. 正數(shù)的絕對值是它本身,負數(shù)的絕對值是它的相反數(shù)
C. 兩個數(shù)的差為正數(shù),至少其中有一個正數(shù) D. 兩個負數(shù),絕對值大的負數(shù)反而小
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將下列證明過程補充完整:
已知:如圖,點B.E分別在AC、DF上,AF分別交BD、CE于點M、N,∠1=∠2,∠A=∠F.
求證:∠C=∠D.
證明:因為∠1=∠2(已知).
又因為∠1=∠ANC(______),
所以______(等量代換).
所以______∥______(同位角相等,兩直線平行).
所以∠ABD=∠C(______).
又因為∠A=∠F(已知),
所以______∥______(______).
所以______(兩直線平行,內(nèi)錯角相等).
所以∠C=∠D(______).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com