【題目】如圖,菱形的邊的垂直平分線交于點(diǎn),交于點(diǎn),連接.當(dāng)時(shí),則( )
A.B.C.D.
【答案】B
【解析】
連接BF,根據(jù)菱形的對(duì)角線平分一組對(duì)角線可得∠BAC=50°,根據(jù)線段垂直平分線上的點(diǎn)到兩端點(diǎn)的距離相等可得AF=BF,根據(jù)等邊對(duì)等角可得∠FBA=∠FAB,再根據(jù)菱形的鄰角互補(bǔ)求出∠ABC,然后求出∠CBF,最后根據(jù)菱形的對(duì)稱性可得∠CDF=∠CBF.
解:如圖,連接BF,
在菱形ABCD中,∠BAC=∠BAD=×100°=50°,
∵EF是AB的垂直平分線,
∴AF=BF,
∴∠FBA=∠FAB=50°,
∵菱形ABCD的對(duì)邊AD∥BC,
∴∠ABC=180°-∠BAD=180°-100°=80°,
∴∠CBF=∠ABC-∠ABF=80°-50°=30°,
由菱形的對(duì)稱性,∠CDF=∠CBF=30°.
故選:B.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy內(nèi)有三點(diǎn):(0,﹣2),(1,﹣1),(2.17,0.37).則過這三個(gè)點(diǎn)_____(填“能”或“不能”)畫一個(gè)圓,理由是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1~4,在直角邊分別為3和4的直角三角形中,每多作一條斜邊上的高就增加一個(gè)三角形的內(nèi)切圓,依此類推,圖10中有10個(gè)直角三角形的內(nèi)切圓,它們的面積分別記為S1,S2,S3,…,S10,則S1+S2+S3+…+S10= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】問題背景:如圖1,在正方形ABCD的內(nèi)部,作∠DAE=∠ABF=∠BCG=∠CDH,根據(jù)三角形全等的條件,易得△DAE≌△ABF≌△BCG≌△CDH,從而得四邊形EFGH是正方形.
類比探究:如圖2,在正△ABC的內(nèi)部,作∠1=∠2=∠3,AD,BE,CF兩兩相交于D,E,F三點(diǎn)(D,E,F三點(diǎn)不重合).
(1)△ABD,△BCE,△CAF是否全等?如果是,請(qǐng)選擇其中一對(duì)進(jìn)行證明;
(2)△DEF是否為正三角形?請(qǐng)說明理由;
(3)如圖3,進(jìn)一步探究發(fā)現(xiàn),△ABD的三邊存在一定的等量關(guān)系,設(shè)BD=a,AD=b,AB=c,請(qǐng)?zhí)剿?/span>a,b,c滿足的等量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=x2+bx+c與x軸交于點(diǎn)A(﹣1,0),B(4,0)與y軸交于點(diǎn)C,點(diǎn)D與點(diǎn)C關(guān)于x軸對(duì)稱,點(diǎn)P是x軸上的一個(gè)動(dòng)點(diǎn),設(shè)點(diǎn)P的坐標(biāo)為(m,0),過點(diǎn)P作x軸的垂線1,交拋物線與點(diǎn)Q.
(1)求拋物線的解析式;
(2)當(dāng)點(diǎn)P在線段OB上運(yùn)動(dòng)時(shí),直線1交BD于點(diǎn)M,試探究m為何值時(shí),四邊形CQMD是平行四邊形;
(3)在點(diǎn)P運(yùn)動(dòng)的過程中,坐標(biāo)平面內(nèi)是否存在點(diǎn)Q,使△BDQ是以BD為直角邊的直角三角形?若存在,請(qǐng)直接寫出點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)y=x2﹣6x+m滿足以下條件:當(dāng)﹣2<x<﹣1時(shí),它的圖象位于x軸的下方;當(dāng)8<x<9時(shí),它的圖象位于x軸的上方,則m的值為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,菱形ABCD的邊AB=8,∠B=60°,P是AB上一點(diǎn),BP=3,Q是CD邊上一動(dòng)點(diǎn),將梯形APQD沿直線PQ折疊,A的對(duì)應(yīng)點(diǎn)為A′,當(dāng)CA′的長(zhǎng)度最小時(shí),CQ的長(zhǎng)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】太陽能光伏建筑是現(xiàn)代綠色環(huán)保建筑之一,老張準(zhǔn)備把自家屋頂改建成光伏瓦面,改建前屋頂截面△ABC如圖2所示,BC=10米,∠ABC=∠ACB=36°,改建后頂點(diǎn)D在BA的延長(zhǎng)線上,且∠BDC=90°,求改建后南屋面邊沿增加部分AD的長(zhǎng).(結(jié)果精確到0.1米)
(參考數(shù)據(jù):sin18°≈0.31,cos18°≈0.95.tan18°≈0.32,sin36°≈0.59.cos36°≈0.81,tan36°≈0.73)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在⊿OAB中,∠OAB=90°.OA=AB=6.將⊿OAB繞點(diǎn)O逆時(shí)針方向旋轉(zhuǎn)90°得到⊿OA1B1
(1)線段A1B1的長(zhǎng)是 ∠AOA1的度數(shù)是
(2)連結(jié)AA1,求證:四邊形OAA1B1是平行四邊形 ;
(3)求四邊形OAA1B1的面積 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com