【題目】如圖,菱形ABCD的邊AB=8,∠B=60°,P是AB上一點,BP=3,Q是CD邊上一動點,將梯形APQD沿直線PQ折疊,A的對應點為A′,當CA′的長度最小時,CQ的長為_____.
【答案】7
【解析】
作CH⊥AB于H,如圖,根據(jù)菱形的性質可判斷△ABC為等邊三角形,則CH=AB=4,AH=BH=4,再利用勾股定理計算出CP=7,再根據(jù)折疊的性質得點A′在以P點為圓心,PA為半徑的弧上,利用點與圓的位置關系得到當點A′在PC上時,CA′的值最小,然后證明CQ=CP即可.
作CH⊥AB于H,如圖,
∵菱形ABCD的邊AB=8,∠B=60°,
∴△ABC為等邊三角形,
∴CH=AB=4,AH=BH=4,
∵PB=3,
∴HP=1,
在Rt△CHP中,CP==7,
∵梯形APQD沿直線PQ折疊,A的對應點A′,
∴點A′在以P點為圓心,PA為半徑的弧上,
∴當點A′在PC上時,CA′的值最小,
∴∠APQ=∠CPQ,而CD∥AB,
∴∠APQ=∠CQP,
∴∠CQP=∠CPQ,
∴CQ=CP=7.
故答案為:7.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形ABCD中,M為BC上一點,F是AM的中點,EF⊥AM,垂足為F,交AD的延長線于點E,交DC于點N.
(1)求證:△ABM∽△EFA;
(2)若AB=12,BM=5,求DE的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,拋物線y=﹣x2+bx+c交x軸于點A(- 4,0)和點B,交y軸于點C(0,4).
(1)求拋物線的函數(shù)表達式;
(2)如圖2,設點Q是線段AC上的一動點,作DQ⊥x軸,交拋物線于點D,當△ADC面積有最大值時,在拋物線對稱軸上找一點M,使DM+AM的值最小,求出此時M的坐標;
(3)點Q在直線AC上的運動過程中,是否存在點Q,使△BQC為等腰三角形?若存在,直接寫出點Q的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某駐村扶貧小組實施產(chǎn)業(yè)扶貧,幫助貧困農(nóng)戶進行西瓜種植和銷售.已知西瓜的成本為6元/千克,規(guī)定銷售單價不低于成本,又不高于成本的兩倍.經(jīng)過市場調查發(fā)現(xiàn),某天西瓜的銷售量y(千克)與銷售單價x(元/千克)的函數(shù)關系如下圖所示:
(1)求y與x的函數(shù)解析式(也稱關系式);
(2)求這一天銷售西瓜獲得的利潤的最大值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,二次函數(shù)y=ax2+bx+2的圖象與x軸交于A(﹣3,0),B(1,0)兩點,與y軸交于點C,
(1)求這個二次函數(shù)的關系解析式;
(2)點M為拋物線上一動點,在x軸上是否存在點Q,使以A、C、M、Q為頂點的四邊形是平行四邊形?若存在,直接寫出點Q的坐標;若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某商場銷售一批名牌襯衫,平均每天可售出10件,每件盈利40元,為了擴大銷售,增加盈利,盡快減少庫存,商場決定采取適當?shù)慕祪r措施.經(jīng)調查發(fā)現(xiàn),如果每件襯衫每降價1元,商場平均每天可多售出1件,若商場平均每天要盈利600元,每件襯衫應降價多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知正方形ABCD的邊長為1,E為BC邊的延長線上一點,CE=1,連接AE,與CD交于點F,連接BF并延長與線段DE交于點G,則BG的長為( 。
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】等腰中,,作的外接圓⊙O.
(1)如圖1,點為上一點(不與A、B重合),連接AD、CD、AO,記與的交點為.
①設,若,請用含與的式子表示;
②當時,若,求的長;
(2)如圖2,點為上一點(不與B、C重合),當BC=AB,AP=8時,設,求為何值時,有最大值?并請直接寫出此時⊙O的半徑.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com