【題目】如圖,∠BAC=90°,ADBC,垂足為D,則下面的結(jié)論中正確的個(gè)數(shù)為( 。

ABAC互相垂直;

ADAC互相垂直;

③點(diǎn)CAB的垂線段是線段AB;

④線段AB的長度是點(diǎn)BAC的距離;

⑤線段ABB點(diǎn)到AC的距離.

A. 2 B. 3 C. 4 D. 5

【答案】A

【解析】

根據(jù)點(diǎn)到直線的距離直線外一點(diǎn)到直線的垂線段的長度,叫做點(diǎn)到直線的距離;當(dāng)兩條直線相交所成的四個(gè)角中,有一個(gè)角是直角時(shí),就說這兩條直線互相垂直,其中一條直線叫做另一條直線的垂線進(jìn)行分析

ABAC互相垂直,說法正確;

ADAC互相垂直說法錯(cuò)誤;

③點(diǎn)CAB的垂線段是線段AB,說法錯(cuò)誤,應(yīng)該是AC;

④線段AB的長度是點(diǎn)BAC的距離,說法正確;

⑤線段ABB點(diǎn)到AC的距離,說法錯(cuò)誤,應(yīng)該是線段AB的長度是B點(diǎn)到AC的距離;

正確的有2個(gè)

故選A

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)A、M、B、N、C在同一直線上順次排列,點(diǎn)M是線段AB的中點(diǎn),點(diǎn)N是線段MC的中點(diǎn),點(diǎn)N在點(diǎn)B的右邊.

(1)填空:圖中共有線段   條;

(2)AB=6,MC=7,求線段BN的長;

(3)AB=a,MC=7,將線段BN的長用含a的代數(shù)式表示出來.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在直角梯形ABCD中,AD∥BC,∠C=90°,BC=CD,點(diǎn)E、F分別在邊BC、CD上,且BE=DF=AD,聯(lián)結(jié)DE,聯(lián)結(jié)AF、BF分別與DE交于點(diǎn)G、P.
(1)求證:AB=BF;
(2)如果BE=2EC,求證:DG=GE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,弦CD⊥AB于點(diǎn)G,點(diǎn)F是CD上一點(diǎn),且滿足 ,連接AF并延長交⊙O于點(diǎn)E,連接AD、DE,若CF=3,AF=4.
(1)求證:△ADF∽△AED;
(2)求FG的長;
(3)求tan∠E的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某班計(jì)劃購買籃球和排球若干個(gè),買4個(gè)籃球和3個(gè)排球需要410元;買2個(gè)籃球和5個(gè)排球需要310元.

(1)籃球和排球單價(jià)各是多少元?

(2)若兩種球共買30個(gè),費(fèi)用不超過1700元,籃球最多可以買多少個(gè)?

(3)如果購買這兩種球剛好用去520元,問有哪幾種購買方案?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計(jì)算:

(1)3﹣5﹣(﹣1)﹣3+12﹣(﹣12

(2)|﹣|×[﹣32÷(﹣2+(﹣2)3]

(3)先化簡(jiǎn),再求值:2x2﹣[3(﹣x2+xy)﹣2y2]﹣2(x2﹣xy+2y2),其中x、y滿足|x﹣|+(y+1)2=0.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】作圖題:

1)如圖,在平面內(nèi)有不共線的3個(gè)點(diǎn)A,B,C.

a)作直線AB,射線AC,線段BC;

b)延長BC到點(diǎn)D,使CD=BC,連接AD;

c)作線段AB的中點(diǎn)E,連接CE;

d)測(cè)量線段CEAD的長度,直接寫出二者之間的數(shù)量關(guān)系_______.

(2) 5個(gè)大小一樣的正方形制成如圖所示的拼接圖形(陰影部分),請(qǐng)你在圖中的拼接圖形上再接一個(gè)正方形,使新拼接成的圖形經(jīng)過折疊后能成為一個(gè)封閉的正方體盒子.

注意只需添加一個(gè)符合要求的正方形,并用陰影表示.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】△ABC在平面直角坐標(biāo)系中的位置如圖所示.

(1)作出△ABC關(guān)于y軸對(duì)稱的△ABlCl;

(2)點(diǎn)P在x軸上,且點(diǎn)P到點(diǎn)B與點(diǎn)C的距離之和最小,直接寫出點(diǎn)P的坐標(biāo)為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖四邊形ABCD中,AD=DC,∠DAB=∠ACB=90°,過點(diǎn)D作DF⊥AC,垂足為F.DF與AB相交于E.設(shè)AB=15,BC=9,P是射線DF上的動(dòng)點(diǎn).當(dāng)△BCP的周長最小時(shí),DP的長為

查看答案和解析>>

同步練習(xí)冊(cè)答案