【題目】如圖,已知BC∥GE,AF∥DE,點(diǎn)D在直線BC上,點(diǎn)F在直線GE上,且∠1=50°.
(1)求∠AFG的度數(shù);
(2)若AQ平分∠FAC,交直線BC于點(diǎn)Q,且∠Q=18°,則∠ACB的度數(shù)為______°.(直接寫出答案)
【答案】(1)50°;(2)86.
【解析】
(1)先根據(jù)BC∥EG得出∠E=∠1=50°,再由AF∥DE可知∠AFG=∠E=50°;
(2)作AM∥BC,由平行線的傳遞性可知AM∥EG,故∠FAM=∠AFG,再根據(jù)AM∥BC可知∠QAM=∠Q,故∠FAQ=∠FAM+∠QAM,再根據(jù)AQ平分∠FAC可知∠MAC=∠QAC+∠QAM=86°,根據(jù)AM∥BC即可得出結(jié)論.
(1)∵BC∥EG,
∴∠E=∠1=50°.
∵AF∥DE,
∴∠AFG=∠E=50°;
(2)作AM∥BC,
∵BC∥EG,
∴AM∥EG,
∴∠FAM=∠AFG=50°.
∵AM∥BC,
∴∠QAM=∠Q=18°,
∴∠FAQ=∠FAM+∠QAM=68°.
∵AQ平分∠FAC,
∴∠QAC=∠FAQ=68°,
∴∠MAC=∠QAC+∠QAM=86°.
∵AM∥BC,
∴∠ACB=∠MAC=86°
故答案為:86.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知△ABC與△CDE都是等邊三角形,點(diǎn)B、C、D在同一直線上,AD與BE相交于點(diǎn)G,BE與AC相交于點(diǎn)F,AD與CE相交于點(diǎn)H,則下列結(jié)論:①△ACD≌△BCE;②∠AGB=60°;③BF=AH;④△CFH是等邊三角形;⑤連CG,則∠BGC=∠DGC ;⑥EG+GC=GD. 其中正確的有________.(只要寫序號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1是長(zhǎng)方形紙帶,將紙帶沿EF折疊成圖2,再沿BF折疊成圖3.
(1)若∠DEF=20°,則圖3中∠CFE度數(shù)是多少?
(2)若∠DEF=a,把圖3中∠CFE用a表示.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD的對(duì)角線AC⊥BD于點(diǎn)E,AB=BC,F為四邊形ABCD外一點(diǎn),且∠FCA=90°,∠CBF=∠DCB.
(1)求證:四邊形DBFC是平行四邊形;
(2)如果BC平分∠DBF,∠CDB=45°,BD=2,求AC的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(理解新知)
如圖①,已知,在內(nèi)部畫(huà)射線,得到三個(gè)角,分別為、、,若這三個(gè)角中有一個(gè)角是另外一個(gè)角的2倍,則稱射線為的“2倍角線”
(1)角的平分線 這個(gè)角的“2倍角線”;(填“是”或“不是”)
(2)若,射線為的“2倍角線”,則 ;
(解決問(wèn)題)
如圖②,已知,射線從出發(fā),以每秒的速度繞點(diǎn)逆時(shí)針旋轉(zhuǎn):射線從出發(fā),以每秒的速度繞點(diǎn)順時(shí)針旋轉(zhuǎn),射線、同時(shí)出發(fā),當(dāng)一條射線回到出發(fā)位置的時(shí)候,整個(gè)運(yùn)動(dòng)隨之停止.設(shè)運(yùn)動(dòng)的時(shí)間為.
(3)當(dāng)射線、旋轉(zhuǎn)到同一條直線上時(shí),求的值;
(4)若、、三條射線中,一條射線恰好是以另外兩條射線為邊的角的“2倍角線”,直接寫出所有可能的的值.(本題中所研究的角都是小于等于的角.)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線l:y= (x﹣h)2﹣2與x軸交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),將拋物線ι在x軸下方部分沿軸翻折,x軸上方的圖象保持不變,就組成了函數(shù)的圖象.
(1)若點(diǎn)A的坐標(biāo)為(1,0).
①求拋物線l的表達(dá)式,并直接寫出當(dāng)x為何值時(shí),函數(shù)的值y隨x的增大而增大;
②如圖2,若過(guò)A點(diǎn)的直線交函數(shù)的圖象于另外兩點(diǎn)P,Q,且S△ABQ=2S△ABP , 求點(diǎn)P的坐標(biāo);
(2)當(dāng)2<x<3時(shí),若函數(shù)f的值隨x的增大而增大,直接寫出h的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】交警通常根據(jù)剎車后輪滑行的距離來(lái)測(cè)算車輛行駛的速度,所用的經(jīng)驗(yàn)公式是u=16.其中u表示車速(單位:km/h),d表示剎車距離(單位:m),f表示摩擦系數(shù).在一次交通事故中,測(cè)得d=20m,f=1.44,而發(fā)生交通事故的路段限速為80km/h,肇事汽車是否違規(guī)超速行駛?說(shuō)明理由.(參考數(shù)據(jù):≈1.4,≈2.2)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】解答下列應(yīng)用題:
⑴某房間的面積為17.6m2,房間地面恰好由110塊相同的正方形地磚鋪成,每塊地磚的邊長(zhǎng)是多少?
⑵已知第一個(gè)正方體水箱的棱長(zhǎng)是60cm,第二個(gè)正方體水箱的體積比第一個(gè)水箱的體積的3倍還多81000 cm3,則第二個(gè)水箱需要鐵皮多少平方米?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com