【題目】如圖,拋物線l:y= (x﹣h)2﹣2與x軸交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),將拋物線ι在x軸下方部分沿軸翻折,x軸上方的圖象保持不變,就組成了函數(shù)的圖象.

(1)若點(diǎn)A的坐標(biāo)為(1,0).
①求拋物線l的表達(dá)式,并直接寫出當(dāng)x為何值時(shí),函數(shù)的值y隨x的增大而增大;
②如圖2,若過A點(diǎn)的直線交函數(shù)的圖象于另外兩點(diǎn)P,Q,且S△ABQ=2S△ABP , 求點(diǎn)P的坐標(biāo);
(2)當(dāng)2<x<3時(shí),若函數(shù)f的值隨x的增大而增大,直接寫出h的取值范圍.

【答案】
(1)解:①把A(1,0)代入拋物線y= (x﹣h)2﹣2中得:

(x﹣h)2﹣2=0,

解得:h=3或h=﹣1,

∵點(diǎn)A在點(diǎn)B的左側(cè),

∴h>0,

∴h=3,

∴拋物線l的表達(dá)式為:y= (x﹣3)2﹣2,

∴拋物線的對(duì)稱軸是:直線x=3,

由對(duì)稱性得:B(5,0),

由圖象可知:當(dāng)1<x<3或x>5時(shí),函數(shù)的值y隨x的增大而增大;

②如圖2,作PD⊥x軸于點(diǎn)D,延長(zhǎng)PD交拋物線l于點(diǎn)F,作QE⊥x軸于E,則PD∥QE,

由對(duì)稱性得:DF=PD,

∵S△ABQ=2S△ABP,

ABQE=2× ABPD,

∴QE=2PD,

∵PD∥QE,

∴△PAD∽△QAE,

,

∴AE=2AD,

設(shè)AD=a,則OD=1+a,OE=1+2a,P(1+a,﹣[ (1+a﹣3)2﹣2]),

∵點(diǎn)F、Q在拋物線l上,

∴PD=DF=﹣[ (1+a﹣3)2﹣2],

QE= (1+2a﹣3)2﹣2,

(1+2a﹣3)2﹣2=﹣2[ (1+a﹣3)2﹣2],

解得:a= 或a=0(舍),

∴P( ,


(2)解:當(dāng)y=0時(shí), (x﹣h)2﹣2=0,

解得:x=h+2或h﹣2,

∵點(diǎn)A在點(diǎn)B的左側(cè),且h>0,

∴A(h﹣2,0),B(h+2,0),

如圖3,作拋物線的對(duì)稱軸交拋物線于點(diǎn)C,

分兩種情況:

①由圖象可知:圖象f在AC段時(shí),函數(shù)f的值隨x的增大而增大,

∴3≤h≤4,

②由圖象可知:圖象f點(diǎn)B的右側(cè)時(shí),函數(shù)f的值隨x的增大而增大,

即:h+2≤2,

h≤0,

綜上所述,當(dāng)3≤h≤4或h≤0時(shí),函數(shù)f的值隨x的增大而增大.


【解析】(1)①利用待定系數(shù)法求拋物線的解析式,由對(duì)稱性求點(diǎn)B的坐標(biāo),根據(jù)圖象寫出函數(shù)的值y隨x的增大而增大(即呈上升趨勢(shì))的x的取值;②如圖2,作輔助線,構(gòu)建對(duì)稱點(diǎn)F和直角角三角形AQE,根據(jù)S△ABQ=2S△ABP,得QE=2PD,證明△PAD∽△QAE,則 ,得AE=2AD,設(shè)AD=a,根據(jù)QE=2FD列方程可求得a的值,并計(jì)算P的坐標(biāo);(2)先令y=0求拋物線與x軸的兩個(gè)交點(diǎn)坐標(biāo),根據(jù)圖象中呈上升趨勢(shì)的部分,有兩部分:分別討論,并列不等式或不等式組可得h的取值.
【考點(diǎn)精析】掌握二次函數(shù)的性質(zhì)是解答本題的根本,需要知道增減性:當(dāng)a>0時(shí),對(duì)稱軸左邊,y隨x增大而減;對(duì)稱軸右邊,y隨x增大而增大;當(dāng)a<0時(shí),對(duì)稱軸左邊,y隨x增大而增大;對(duì)稱軸右邊,y隨x增大而減。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖表示某公司“順風(fēng)車”與“快車”的行駛里程x(千米)與計(jì)費(fèi)y(元)之間的函數(shù)圖象.

(1)由圖象寫出乘車?yán)锍虨?千米時(shí)選擇   (“順風(fēng)車”或“快車”)更便宜;

(2)當(dāng)x>5時(shí),順風(fēng)車的函數(shù)是y=x+,判斷乘車,里程是8千米時(shí),選擇“順風(fēng)車”和“快車”哪個(gè)更便宜?說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,菱形OABC的邊OA在x軸上,AC與OB交于點(diǎn)D (8,4),反比例函數(shù)y= 的圖象經(jīng)過點(diǎn)D.若將菱形OABC向左平移n個(gè)單位,使點(diǎn)C落在該反比例函數(shù)圖象上,則n的值為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知BCGEAFDE,點(diǎn)D在直線BC上,點(diǎn)F在直線GE上,且∠1=50°

1)求∠AFG的度數(shù);

2)若AQ平分∠FAC,交直線BC于點(diǎn)Q,且∠Q=18°,則∠ACB的度數(shù)為______°.(直接寫出答案)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)A、BC是不在同一條直線上的三點(diǎn),請(qǐng)按下列要求畫圖并作答(畫圖時(shí)工具不限,不需寫出結(jié)論,只需畫出圖形、標(biāo)注字母):

(1)畫直線BC,連接AC;

(2)畫線段BC的中點(diǎn)D,連接AD;

(3)畫出∠ADC的平分線交AC于點(diǎn)E

(4)若∠BDA=求∠ADC,∠EDC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】點(diǎn)O為直線AB上一點(diǎn),在直線AB上側(cè)任作一個(gè)∠COD,使得∠COD=90°

1)如圖1,過點(diǎn)O作射線OE,當(dāng)OE恰好為∠AOD的角平分線時(shí),請(qǐng)直接寫出∠BOD與∠COE之間的倍數(shù)關(guān)系,即∠BOD= ______ COE(填一個(gè)數(shù)字);

2)如圖2,過點(diǎn)O作射線OE,當(dāng)OC恰好為∠AOE的角平分線時(shí),另作射線OF,使得OF平分∠COD,求∠FOB+EOC的度數(shù);

3)在(2)的條件下,若∠EOC=3EOF,求∠AOE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,(1)∵∠A=_____(已知),

ACED( )

(2)∵∠2=_____(已知),

ACED( )

(3)∵∠A+_____=180°(已知),

ABFD( )

(4)AB_____(已知),

∴∠2+AED=180°( )

(5)AC_____(已知),

∴∠C=1( )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一架長(zhǎng)2.5米的梯子AB如圖所示斜靠在一面墻上,這時(shí)梯足B離墻底CC=90°)的距離BC0.7米.

(1)求此時(shí)梯頂A距地面的高度AC;

(2)如果梯頂A下滑0.9米,那么梯足B在水平方向,向右滑動(dòng)了多少米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲乙二人共同計(jì)算2a+x(b+x),由于甲抄錯(cuò)了第一個(gè)多項(xiàng)式中a的符號(hào),得到結(jié)果為;由于乙抄漏了2,得到的結(jié)果為

1)求ab的值 ;

2)求出正確的結(jié)果.

查看答案和解析>>

同步練習(xí)冊(cè)答案