【題目】如圖1,點(diǎn)A是線段BC上一點(diǎn),△ABD,△AEC都是等邊三角形,BE交AD于點(diǎn)M,CD交AE于N.
(1)求證:BE=DC;
(2)求證:△AMN是等邊三角形;
(3)將△ACE繞點(diǎn)A按順時(shí)針?lè)较蛐D(zhuǎn)90°,其它條件不變,在圖2中補(bǔ)出符合要求的圖形,并判斷(1)、(2)兩小題結(jié)論是否仍然成立,并加以證明.
【答案】(1)證明見(jiàn)詳解;(2)證明見(jiàn)詳解;(3)(1)的結(jié)論成立,(2)的結(jié)論不成立,證明見(jiàn)詳解
【解析】
(1)根據(jù)等邊三角形的性質(zhì)得到AB=AD,AC=AE,∠DAB=∠EAC=60°,則∠DAC=∠BAE,根據(jù)“SAS"可判斷△ABE≌△ADC,則BE= DC;
(2)由△ABE≌△ADC得到∠ABE=∠ADC,根據(jù)"AAS"可判斷△ABM≌△ADN(AAS),則AM=AN;∠DAE=60°,根據(jù)等邊三角形的判定方法可得到△AMN是等邊三角形.
(3)判定結(jié)論1是否正確,也是通過(guò)證明△ABE≌△ADC求得,這兩個(gè)三角形中AB=AD,AE=AC,∠BAE和∠CAD都是60°+∠ACB,因此兩三角形就全等BE=CD,結(jié)論1正確;將△ACE繞點(diǎn)A按順時(shí)針?lè)较蛐D(zhuǎn)90°,則∠DAC> 90°,因此三角形AMN絕對(duì)不可能是等邊三角形.
解:(1)∵△ABD,△AEC都是等邊三角形,
∴AB=AD,AC=AE,∠DAB=∠EAC=60°,
∴∠DAC=∠BAE,
在△ABE和△ADC中,,
∴△ABE≌△ADC(SAS),
∴BE=DC;
(2)由上述(1)證得:△ABE≌△ADC,
∴∠ABM=∠ADN.
在△ABM和△ADN中, ,
∴△ABM≌△ADN(AAS),
∴AM=AN.
∵∠DAE=60°,
∴△AMN是等邊三角形;
(3)∵△ABD,△AEC都是等邊三角形,
∴AB=AD,AC=AE,∠DAB=∠EAC=60°,
∴∠DAC=∠BAE,
在△ABE和△ADC中,,
∴△ABE≌△ADC(SAS),
∴BE=DC,∠ABE=∠ADC,
∵∠BAC=90°
∴∠MAN>90°,
∵∠MAN≠60°,
∴△AMN不是等邊三角形,
∴(1)的結(jié)論成立,(2)的結(jié)論不成立.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知在平面直角坐標(biāo)系xOy中,拋物線經(jīng)過(guò)原點(diǎn),且與軸相交于點(diǎn),點(diǎn)的橫坐標(biāo)為6,拋物線頂點(diǎn)為點(diǎn).
(1)求這條拋物線的表達(dá)式和頂點(diǎn)的坐標(biāo);
(2)過(guò)點(diǎn)作,在直線上點(diǎn)取一點(diǎn),使得,求點(diǎn)的坐標(biāo);
(3)將該拋物線向左平移個(gè)單位,所得新拋物線與軸負(fù)半軸相交于點(diǎn)且頂點(diǎn)仍然在第四象限,此時(shí)點(diǎn)移動(dòng)到點(diǎn)的位置,,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】隨著人們生活水平的提高,家用轎車(chē)越來(lái)越多地進(jìn)入家庭.王先生家中買(mǎi)了一輛小轎車(chē),他連續(xù)記錄了7天中每天行駛的路程(如下表),以50km為標(biāo)準(zhǔn),多于50km的記為“+”,不足50km的記為“﹣”,剛好50km的記為“0”.
第一天 | 第二天 | 第三天 | 第四天 | 第五天 | 第六天 | 第七天 | |
路程(km) | ﹣8 | ﹣11 | ﹣14 | 0 | ﹣16 | +41 | +15 |
(1)王先生這七天中平均每天駕車(chē)行駛多少千米?
(2)若每行駛1km需用汽油0.1升,汽油價(jià)格為6.5元/升,則王先生家一個(gè)月(按30天計(jì))的汽油費(fèi)用是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了解某校學(xué)生對(duì)《最強(qiáng)大腦》、《朗讀者》、《中國(guó)詩(shī)詞大會(huì)》、《出彩中國(guó)人》四個(gè)電視節(jié)目的喜愛(ài)情況,隨杋抽取了名學(xué)生進(jìn)行調(diào)查統(tǒng)計(jì)(要求每名學(xué)生選出并且只能選出一個(gè)自己最喜愛(ài)的節(jié)目),并將調(diào)查結(jié)果繪制成如圖統(tǒng)計(jì)圖表:
學(xué)生最喜愛(ài)的節(jié)目人數(shù)統(tǒng)計(jì)表
節(jié)目 | 人數(shù)(名) | 百分比 |
最強(qiáng)大腦 | 5 | 10% |
朗讀者 | 15 | |
中國(guó)詩(shī)詞大會(huì) | 40% | |
出彩中國(guó)人 | 10 | 20% |
根據(jù)以上信息,回答下列問(wèn)題:
(1) , ;
(2)補(bǔ)全上面的條形統(tǒng)計(jì)圖;
(3)若該校共有學(xué)生名,估計(jì)該校學(xué)生最喜愛(ài)《朗讀者》節(jié)目的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】武漢某超市在疫情前用3000元購(gòu)進(jìn)某種干果銷(xiāo)售,發(fā)生疫情后,為了保障附近居民的生活需求,又調(diào)撥9000元購(gòu)進(jìn)該種干果.受疫情影響,交通等成本上漲,第二次的進(jìn)價(jià)比第一次進(jìn)價(jià)提高了20%,但是第二次購(gòu)進(jìn)干果的數(shù)量是第一次的2倍還多300千克,如果超市先按每千克9元的價(jià)格出售,當(dāng)大部分干果售出后,最后的600千克按原售價(jià)的7折售完.售賣(mài)結(jié)束后,超市決定將盈利的資金捐助給武漢市用于抗擊新冠肺炎疫情.那么該超市可以捐助___________元.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】新交通法規(guī)實(shí)施以來(lái),為了解某社區(qū)居民遵守交通法規(guī)情況,小明隨機(jī)選取部分居民就“行人闖紅燈現(xiàn)象”進(jìn)行問(wèn)卷調(diào)查,調(diào)查分為“A:從不闖紅燈;B:偶爾闖紅燈;C:經(jīng)常闖紅燈;D:其他”四種情況,并根據(jù)調(diào)查結(jié)果繪制出部分條形統(tǒng)計(jì)圖(如圖1)和部分扇形統(tǒng)計(jì)圖(如圖2).請(qǐng)根據(jù)圖中信息,解答下列問(wèn)題:
(1)本次調(diào)查共選取 名居民;
(2)求出扇形統(tǒng)計(jì)圖中“C”所對(duì)扇形的圓心角是 度,并將條形統(tǒng)計(jì)圖補(bǔ)充完整;
(3)如果該社區(qū)共有居民2600人,估計(jì)有多少人從不闖紅燈?(請(qǐng)計(jì)算說(shuō)明)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知拋物線y=ax2+bx+c(a≠0)的對(duì)稱(chēng)軸為直線x=﹣1.有下列結(jié)論:①b2=4ac ②abc>0 ③a>c ④4a+c>2b.其中結(jié)論正確的個(gè)數(shù)是( )
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在全國(guó)預(yù)防“新冠肺炎”時(shí)期,某廠接受了生產(chǎn)一批高質(zhì)量醫(yī)用口罩的任務(wù).要求8天之內(nèi)(含8天)生產(chǎn)型和型兩種型號(hào)的口罩共5萬(wàn)只,其中型口罩不得少于1.8萬(wàn)只.該廠的生產(chǎn)能力是:每天只能生產(chǎn)一種型號(hào)的口罩,若生產(chǎn)型口罩每天能生產(chǎn)0.6萬(wàn)只,若生產(chǎn)型口罩每天能生產(chǎn)0.8萬(wàn)只.已知生產(chǎn)6只型和10只型口罩一共獲利6元,生產(chǎn)4只型和5只型口罩一共獲利3.5元
(1)生產(chǎn)一只型口罩和型口罩分別獲利多少錢(qián)?
(2)若生產(chǎn)型口罩萬(wàn)只,該廠這次生產(chǎn)口罩的總利潤(rùn)為萬(wàn)元,請(qǐng)求出關(guān)于的函數(shù)關(guān)系式;
(3)在完成任務(wù)的前提下,如何安排生產(chǎn)型和型口罩的只數(shù),使獲得的總利潤(rùn)最大?最大利潤(rùn)是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖正方形ABCD中,E為AB中點(diǎn),P為對(duì)角線AC上一點(diǎn),且PB+PE=,則正方形ABCD邊長(zhǎng)的最大值是_____.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com