【題目】如圖△ABC,A=96°,延長BCD,ABC的平分線與∠ACD的平分線交于點A,ABC的平分線與∠ACD的平分線交于點A,以此類推,ABC的平分線與∠ACD的平分線交于點A,則∠A的大小是___

【答案】;

【解析】

先利用外角等于不相鄰的兩個內(nèi)角之和,以及角平分線的性質(zhì)求∠A=A,再依此類推得,∠A= A;A5= A;找出規(guī)律,從而求∠A的值.

BAC+ABC=ACD,2ACD=ACD=BAC+ABC

2(BAC+ABC)=BAC+ABC,2BAC+2ABC=BAC+ABC,

2ABC=ABC,

2BAC=BAC

同理,可得2BAC=BAC,2BAC=BAC,2BAC=BAC,2BAC=BA C

∴∠BAC= BAC=BAC= BAC= BAC= BAC=96°÷32=3°,

故∠A=3°.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】在同一坐標系中,一次函數(shù)y=﹣mx+n2與二次函數(shù)y=x2+m的圖象可能是(  )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】近年來交通事故發(fā)生率逐年上升,交通問題成為重大民生問題鄱陽二中數(shù)學興趣小組為檢測汽車的速度設(shè)計了如下實驗如圖,在公路MN近似看作直線旁選取一點C,測得C到公路的距離為30,再在MN上選取A、B兩點,測得CAN=30°,CBN=60°

1AB的長;(精確到0.1,參考數(shù)據(jù)=1.41, =1.73

2若本路段汽車限定速度為40千米/小時,某車從AB用時3該車是否超速?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀下列材料:通過小學的學習我們知道,分數(shù)可分為“真分數(shù)”和“假分數(shù)”.而假分數(shù)都可化為帶分數(shù),如:.我們定義:在分式中,對于只含有一個字母的分式,當分子的次數(shù)大于或等于分母的次數(shù)時,我們稱之為“假分式”;當分子的次數(shù)小于分母的次數(shù)時,我們稱之為“真分式”.如:,這樣的分式就是假分式;再如:,這樣的分式就是真分式.類似的,假分式也可以化為帶分式(即:整式與真分式的和的形式).如:;再如:

解決下列問題:

1)分式_____分式(填“真分式”或“假分式”);

2)把假分式化為帶分式的形式(寫出過程);

3)如果分式的值為整數(shù),那么的整數(shù)值為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知直線CD⊥AB于點O,∠EOF=90°,射線OP平分∠COF.

(1)如圖1,∠EOF在直線CD的右側(cè):

①若∠COE=30°,求∠BOF和∠POE的度數(shù);

②請判斷∠POE與∠BOP之間存在怎樣的數(shù)量關(guān)系?并說明理由.

(2)如圖2,∠EOF在直線CD的左側(cè),且點E在點F的下方:

①請直接寫出∠POE與∠BOP之間的數(shù)量關(guān)系;

②請直接寫出∠POE與∠DOP之間的數(shù)量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知∠AOB90°,在∠AOB的平分線OM上有一點C,將一個三角板的直角頂點與C重合,它的兩條直角邊分別與OA,OB(或它們的反向延長線)相交于點D,E.

當三角板繞點C旋轉(zhuǎn)到CDOA垂直時(如圖①),易證:ODOEOC

當三角板繞點C旋轉(zhuǎn)到CDOA不垂直時,即在圖②,圖③這兩種情況下,上述結(jié)論是否仍然成立?若成立,請給予證明;若不成立,線段OD,OE,OC之間又有怎樣的數(shù)量關(guān)系?請寫出你的猜想,不需證明.

  

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,A(8,6),C(0,10),AC=CO,直線ACx軸于點M,將△AOC沿直線AC翻折,使得點O落在點B處,連接ABx軸于D,動點P從點O出發(fā),以2個單位長度/秒的速度沿射線OA運動;同時動點QA出發(fā)以每秒1個單位的速度沿射線AB運動。

(1)B點的坐標;

(2)連接PB,設(shè)點P的運動時間為t秒,△PAB的面積為S,求St的關(guān)系式,并直接寫t的取值范圍;

(3)在點P、Q運動過程中,當t為何值時,△APQ是以PQ為底邊的等腰三角形?并直接寫出Q點坐標。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,反比例函數(shù)y= 的圖象與一次函數(shù)y=x+b的圖象交

于點A(1,4)、點B(-4,n).

(1)求一次函數(shù)和反比例函數(shù)的解析式;

(2)求△OAB的面積;

(3)直接寫出一次函數(shù)值大于反比例函數(shù)值的自變量x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABCD中,MN分別是AD,BC的中點,AND=90°,連接CMDN于點O

1)求證:ABN≌△CDM

2)過點CCEMN于點E,交DN于點P,若PE=1,1=2,求AN的長.

查看答案和解析>>

同步練習冊答案