已知拋物線y=ax2+bx+c(a≠0)經(jīng)過A(-2,0)、B(0,1)兩點,且對稱軸是y軸.經(jīng)過點C(0,2)的直線l與x軸平行,O為坐標原點,P、Q為拋物線y=ax2+bx+c(a≠0)上的兩動點.
(1)求拋物線的解析式;
(2)以點P為圓心,PO為半徑的圓記為⊙P,判斷直線l與⊙P的位置關系,并證明你的結論;
(3)設線段PQ=9,G是PQ的中點,求點G到直線l距離的最小值.
(1)∵拋物線y=ax2+bx+c的對稱軸是y軸,
∴b=0,
∵拋物線y=ax2+bx+c經(jīng)過點A(-2,0)、B(0,1)兩點,
∴c=1,a=-
1
4
,
∴所求拋物線的解析式為y=-
1
4
x2+1;

(2)設點P坐標為(p,-
1
4
p2+1),
如圖,過點P作PH⊥l,垂足為H,
∵PH=2-(-
1
4
p2+1)=
1
4
p2+1,
OP=
p2+(-
1
4
p2+1)2
=
1
4
p2+1,
∴OP=PH,
∴直線l與以點P為圓心,PO長為半徑的圓相切;

(3)如圖,分別過點P、Q、G作l的垂線,垂足分別是D、E、F.連接EG并延長交DP的延長線于點K,
∵G是PQ的中點,
∴易證得△EQG≌△KPG,
∴EQ=PK,
由(2)知拋物線y=-
1
4
x2+1上任意一點到原點O的距離等于該點到直線l:y=2的距離,
即EQ=OQ,DP=OP,
∴FG=
1
2
DK=
1
2
(DP+PK)=
1
2
(DP+EQ)=
1
2
(OP+OQ),
∴只有當點P、Q、O三點共線時,線段PQ的中點G到直線l的距離GF最小,
∵PQ=9,
∴GF≥4.5,即點G到直線l距離的最小值是4.5.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:解答題

在直角坐標平面內(nèi),二次函數(shù)圖象的頂點為A(1,-4),且過點B(3,0).
(1)求該二次函數(shù)的解析式;
(2)將該二次函數(shù)圖象向右平移幾個單位,可使平移后所得圖象經(jīng)過坐標原點?并直接寫出平移后所得圖象與x軸的另一個交點的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

兩個數(shù)相差左,設其中較大的一個數(shù)為x,那么它們的積y是如何隨x的變化而變化的?你能分別用函數(shù)表達式、表格和圖象表示這種變化嗎?
(1)用函數(shù)表達式表示:y=______;
(左)用表格表示:
x
y
(3)用圖象表示.
(4)根據(jù)以上三種表示方式回答下列問題:
①自變量x的取值范圍是什么?
②圖象的對稱軸和頂點坐標分別是什么?
③如何描述y隨x的變化而變化的情況?
④你是分別通過哪種表示方式回答上面三個問題的?

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,已知平面直角坐標系xOy中,點A(m,6),B(n,1)為兩動點,其中0<m<3,連接OA,OB,OA⊥OB.
(1)求證:mn=-6;
(2)當S△AOB=10時,拋物線經(jīng)過A,B兩點且以y軸為對稱軸,求拋物線對應的二次函數(shù)的關系式;
(3)在(2)的條件下,設直線AB交y軸于點F,過點F作直線l交拋物線于P,Q兩點,問是否存在直線l,使S△POF:S△QOF=1:3?若存在,求出直線l對應的函數(shù)關系式;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,是一學生擲鉛球時,鉛球行進高度y(cm)的函數(shù)圖象,點B為拋物線的最高點,則該同學的投擲成績?yōu)開_____米.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,小明的父親在相距2米的兩棵樹間拴了一根繩子,給小明做了一個簡易的秋千.拴繩子的地方距地面高都是2.5米,繩子自然下垂呈拋物線狀,身高1米的小明距較近的那棵樹0.5米時,頭部剛好接觸到繩子,
(1)選取合適的點作為原點,建立直角坐標系,求出拋物線的解析式;
(2)求繩子的最低點距地面的距離.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,一個小球由靜止開始在一個斜坡上向下滾動,通過儀器觀察得到小球滾動的距離s(m)與時間t(s)的數(shù)據(jù)如下表.那么s與t之間的函數(shù)關系式是s=______.
時間t/s1234
距離s/m281832

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在矩形ABCD中,AB=2AD,線段EF=10.在EF上取一點M,分別以EM、MF為一邊作矩形EMNH、矩形MFGN,使矩形MFGN矩形ABCD.令MN=x,當x為何值時,矩形EMNH的面積S有最大值,最大值是多少?

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,Rt△ABC中,∠B=90°,AB=4,BC=8,E是AC邊上一點,ED⊥AB于點D,EF⊥BC于F,設AD為x,四邊形EFBD的面積為y.
(1)寫出y與x的函數(shù)關系式,并求出自變量x的取值范圍;
(2)求E點在AC邊上的什么位置時,四邊形EFBD的面積最大,最大面積是多少?

查看答案和解析>>

同步練習冊答案