精英家教網 > 初中數學 > 題目詳情
如圖,是一學生擲鉛球時,鉛球行進高度y(cm)的函數圖象,點B為拋物線的最高點,則該同學的投擲成績?yōu)開_____米.
∵函數的圖象的最高點是B,B的坐標是(4,3),
∴設函數的解析式是y=a(x-4)2+3,
∵圖象過(0,2)點,
∴代入得:2=a(0-4)2+3,
解得:a=-
1
16
,
∴函數的解析式是y=-
1
16
(x-4)2+3,
把y=0代入解析式得:0=-
•1
16
(x-4)2+3,
解得:x1=4+4
3
,x2=4-4
3
,
∴A(4+4
3
,0),
故答案為:(4+4
3
).
練習冊系列答案
相關習題

科目:初中數學 來源:不詳 題型:解答題

已知拋物線y=ax2+bx+c(a≠0)經過A(-2,0)、B(0,1)兩點,且對稱軸是y軸.經過點C(0,2)的直線l與x軸平行,O為坐標原點,P、Q為拋物線y=ax2+bx+c(a≠0)上的兩動點.
(1)求拋物線的解析式;
(2)以點P為圓心,PO為半徑的圓記為⊙P,判斷直線l與⊙P的位置關系,并證明你的結論;
(3)設線段PQ=9,G是PQ的中點,求點G到直線l距離的最小值.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

設拋物線y=ax2+bx+c與X軸交于兩不同的點A(-1,0),B(m,0),(點A在點B的左邊),與y軸的交點為點C(0,-2),且∠ACB=90°.
(1)求m的值和該拋物線的解析式;
(2)若點D為該拋物線上的一點,且橫坐標為1,點E為過A點的直線y=x+1與該拋物線的另一交點.在X軸上是否存在點P,使得以P、B、D為頂點的三角形與△AEB相似?若存在,求出點P的坐標;若不存在,請說明理由.
(3)連接AC、BC,矩形FGHQ的一邊FG在線段AB上,頂點H、Q分別在線段AC、BC上,若設F點坐標為(t,0),矩形FGHQ的面積為S,當S取最大值時,連接FH并延長至點M,使HM=k•FH,若點M不在該拋物線上,求k的取值范圍.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

如圖,已知拋物線y=
1
2
x2+mx+n(n≠0)與直線y=x交于A、B兩點,與y軸交于點C,OA=OB,BCx軸.
(1)求拋物線的解析式;
(2)設D、E是線段AB上異于A、B的兩個動點(點E在點D的上方),DE=
2
,過D、E兩點分別作y軸的平行線,交拋物線于F、G,若設D點的橫坐標為x,四邊形DEGF的面積為y,求x與y之間的關系式,寫出自變量x的取值范圍,并回答x為何值時,y有最大值.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

如圖一次函數圖象與x軸y軸交于A(6,0)B(0,2
3
)線段AB的垂直平分線交x軸于點C交y軸于點D
求:(1)求這個一次函數的解析式;
(2)過A,B,C三點的拋物線解析式.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

二次函數y=ax2+bx+c(b、c為常數).
(1)若二次函數的圖象經過A(-2,-3)和B(2,5)兩點,求此二次函數的關系式;
(2)求此二次函數圖象的頂點坐標及對稱軸.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

如圖中是拋物線形拱橋,當水面在n時,拱頂離水面2m,水面寬4m,水面下降1m,水面寬度增加多少?

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

一座隧道的截面由拋物線和長方形構成,長方形的長為8m,寬為2m,隧道最高點P位于AB的中央且距地面6m,建立如圖所示的坐標系:
(1)求拋物線的解析式;
(2)一輛貨車高4m,寬2m,能否從該隧道內通過,為什么?
(3)如果隧道內設雙行道,那么這輛貨車是否可以順利通過,為什么?

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

(1)探究新知:
①如圖1,已知ADBC,AD=BC,點M,N是直線CD上任意兩點.
求證:△ABM與△ABN的面積相等.
②如圖2,已知ADBE,AD=BE,ABCDEF,點M是直線CD上任一點,點G是直線EF上任一點,試判斷△ABM與△ABG的面積是否相等,并說明理由.
(2)結論應用:
如圖3,拋物線y=ax2+bx+c的頂點為C(1,4),交x軸于點A(3,0),交y軸于點D,試探究在拋物線y=ax2+bx+c上是否存在除點C以外的點E,使得△ADE與△ACD的面積相等?若存在,請求出此時點E的坐標;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案