【題目】如圖,一樓房AB后有一假山,山坡斜面CD與水平面夾角為30°,坡面上點E處有一亭子,測得假山坡腳C與樓房水平距離BC=10米,與亭子距離CE=20米,小麗從樓房頂測得點E的俯角為45°.求樓房AB的高(結果保留根號).
【答案】解:過點E作EF⊥BC于點F,EH⊥AB于點H.
∴∠EFC=∠EHA=∠EHB=∠HBC=90°.
∴四邊形HBFE是矩形,
∴HE=BF,HB=EF,
∵在Rt△CEF中,CE=20,∠ECF=30°
∴EF= CE=10,CF=CE cos30°= ,
∴HB=EF=10,BF=BC+CF= ,
∴HE=BF= ,
∵在Rt△AHE中,∠HAE=90°-45°=45°,
∴AH=HE= ,
∴AB=AH+BH=10+10 +10=20+10 (米)
答:樓房AB的高為(20+10 )米.
【解析】根據已知條件山坡斜面CD與水平面夾角為30°,CE=20米,因此過點E作EF⊥BC于點F,利用解直角三角形求出CF、EF的長,由BC=10米得出BF的長,再根據已知條件小麗從樓房頂測得點E的俯角為45°,因此過點E作EH⊥AB于點H.易證得四邊形HBFE是矩形,得出HE的長。從而得到AH的長,然后根據AB=AH+BH,即可求得結果。
科目:初中數學 來源: 題型:
【題目】若順次連接四邊形的各邊中點所得的四邊形是菱形,則該四邊形一定是( )
A. 矩形 B. 一組對邊相等,另一組對邊平行的四邊形
C. 對角線互相垂直的四邊形 D. 對角線相等的四邊形
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖①,在平面直角坐標系中,A(a,0),C(b,2),且滿足(a+2)2+=0,過C作CB⊥x軸于B.
(1)求三角形ABC的面積;
(2)如圖②,若過B作BD∥AC交y軸于D,且AE,DE分別平分∠CAB,∠ODB,求∠AED的度數;
(3)在y軸上是否存在點P,使得三角形ACP和三角形ABC的面積相等?若存在,求出P點的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,Rt△ABC中,∠C=90°,AB=5,BC=4,點G為邊BC的中點,點D從點C出發(fā)沿CA向點A運動,到點A停止,以GD為邊作正方形DEFG,則點E運動的路程為_______.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,△ABC中,點O為AC邊上的一個動點,過點O作直線MN∥BC,設MN交∠BCA的外角平分線CF于點F,交∠ACB內角平分線CE于E.
(1)求證:EO=FO;
(2)當點O運動到何處時,四邊形AECF是矩形?并證明你的結論;
(3)若AC邊上存在點O,使四邊形AECF是正方形,猜想△ABC的形狀并證明你的結論。
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,矩形ABCD中,AB=2,BC=6,P為矩形內一點,連接PA,PB,PC,則PA+PB+PC的最小值是( 。
A. 4+3B. 2C. 2+6D. 4
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com