精英家教網 > 初中數學 > 題目詳情

【題目】如圖,一樓房AB后有一假山,山坡斜面CD與水平面夾角為30°,坡面上點E處有一亭子,測得假山坡腳C與樓房水平距離BC=10米,與亭子距離CE=20米,小麗從樓房頂測得點E的俯角為45°.求樓房AB的高(結果保留根號).

【答案】解:過點E作EF⊥BC于點F,EH⊥AB于點H.

∴∠EFC=∠EHA=∠EHB=∠HBC=90°.

∴四邊形HBFE是矩形,

∴HE=BF,HB=EF,

∵在Rt△CEF中,CE=20,∠ECF=30°

∴EF= CE=10,CF=CE cos30°= ,

∴HB=EF=10,BF=BC+CF= ,

∴HE=BF= ,

∵在Rt△AHE中,∠HAE=90°-45°=45°,

∴AH=HE= ,

∴AB=AH+BH=10+10 +10=20+10 (米)

答:樓房AB的高為(20+10 )米.


【解析】根據已知條件山坡斜面CD與水平面夾角為30°,CE=20米,因此過點E作EF⊥BC于點F,利用解直角三角形求出CF、EF的長,由BC=10米得出BF的長,再根據已知條件小麗從樓房頂測得點E的俯角為45°,因此過點E作EH⊥AB于點H.易證得四邊形HBFE是矩形,得出HE的長。從而得到AH的長,然后根據AB=AH+BH,即可求得結果。

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,給出下列條件:① ;② ;③ ;④ 其中單獨能夠判定 的個數為( )

A.1
B.2
C.3
D.4

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】作圖題(尺規(guī)作圖,不寫作法,但保留作圖痕跡).

如圖,已知∠α和∠β,求作∠AOB,使∠AOB=∠α+∠β

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】若順次連接四邊形的各邊中點所得的四邊形是菱形,則該四邊形一定是(  )

A. 矩形 B. 一組對邊相等,另一組對邊平行的四邊形

C. 對角線互相垂直的四邊形 D. 對角線相等的四邊形

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖①,在平面直角坐標系中,A(a,0),C(b2),且滿足(a+2)2+=0,過CCBx軸于B

(1)求三角形ABC的面積;

(2)如圖②,若過BBDACy軸于D,且AEDE分別平分∠CAB,∠ODB,求∠AED的度數;

(3)y軸上是否存在點P,使得三角形ACP和三角形ABC的面積相等?若存在,求出P點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,RtABC中,∠C90°,AB5,BC4,點G為邊BC的中點,點D從點C出發(fā)沿CA向點A運動,到點A停止,以GD為邊作正方形DEFG,則點E運動的路程為_______

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,ABC,OAC邊上的一個動點,過點O作直線MNBCMNBCA的外角平分線CF于點F,ACB內角平分線CEE

1求證:EO=FO;

2當點O運動到何處時四邊形AECF是矩形?并證明你的結論;

3AC邊上存在點O,使四邊形AECF是正方形猜想ABC的形狀并證明你的結論。

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,矩形ABCD中,AB2,BC6,P為矩形內一點,連接PAPB,PC,則PA+PB+PC的最小值是( 。

A. 4+3B. 2C. 2+6D. 4

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】下列全國各地地鐵標志圖中,既是軸對稱圖形又是中心對稱圖形的是( )
A.
B.
C.
D.

查看答案和解析>>

同步練習冊答案