【題目】已知y=y1+y2,y1與x+1成正比例,y2與x+1成反比例,當x=0時,y=﹣5;當x=2時,y=﹣7.
(1)求y與x的函數(shù)關系式;
(2)當y=5時,求x的值.
【答案】(1);(2)y=5時,x=﹣2或x=﹣.
【解析】(1)根據(jù)題意,可設y1=k1(x+1), ;代入數(shù)據(jù)可得答案;
(2)將y=5代入由(1)可得解析式中,解可得答案.
試題解析:解:(1)設y1=k1(x+1),;
則有: .
∵當x=0時,y=﹣5;當x=2時,y=﹣7,∴有 .
解得:k1=﹣2,k2=﹣3.
y與x的函數(shù)關系式為: ;
(2)把y=5代入可得: ,去分母得:﹣2(x+1)2﹣3=5(x+1),整理得:2x2+9x+10=0,即(x+2)(2x+5)=0,解得:x=﹣2或x=﹣.
經檢驗:x=﹣2或x=﹣是原方程的解,則y=5時,x=﹣2或x=﹣.
科目:初中數(shù)學 來源: 題型:
【題目】設, ,……, ,(n為正整數(shù))
(1)試說明是8的倍數(shù);
(2)若△ABC的三條邊長分別為、、(為正整數(shù))
①求的取值范圍.
②是否存在這樣的,使得△ABC的周長為一個完全平方數(shù),若存在,試舉出一例,若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,E點為DF上的點,B為AC上的點,∠1=∠2,∠C=∠D,那么DF∥AC,請完成它成立的理由
∵∠1=∠2 ( )
∠2=∠3 ,∠1=∠4( )
∴∠3=∠4( )
∴_______∥_______ ( )
∴∠C=∠ABD( )
∵∠C=∠D( )
∴∠D=∠ABD( )
∴DF∥AC( )
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為驗證“擲一個質地均勻的骰子,向上的點數(shù)為偶數(shù)的概率是0.5”,下列模擬實驗中,不科學的是( )
A. 袋中裝有1個紅球一個綠球,它們除顏色外都相同,計算隨機摸出紅球的概率
B. 用計算器隨機地取不大于10的正整數(shù),計算取得奇數(shù)的概率
C. 隨機擲一枚質地均勻的硬幣,計算正面朝上的概率
D. 如圖,將一個可以自由旋轉的轉盤分成甲、乙、丙3個相同的扇形,轉動轉盤任其自由停止,計算指針指向甲的概率
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一架2.5米長的梯子斜立在豎直的墻上,此時梯足B距底端O為0.7米。(1)求OA的長度。(2)如果梯子頂端下滑0.4米,則梯子將滑出多少米?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知∠BAC=40°,把△ABC繞著點A順時針旋轉,使得點B與CA的延長線上的點D重合,連接CE.
(1)△ABC旋轉了多少度?
(2)連接CE,試判斷△AEC的形狀.
(3)若∠ACE=20°,求∠AEC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】問題背景:在△ABC中,AB、BC、AC三邊的長分別為、、,求這個三角形的面積小輝同學在解答這道題時,先建立一個正方形網(wǎng)格(每個小正方形的邊長為1),再在網(wǎng)格中畫出格點△ABC(即△ABC三個頂點都在小正方形的頂點處),如圖1所示.這樣不需求△ABC的高,而借用網(wǎng)格就能計算出它的面積.
(1)請你利用上述方法求出△ABC的面積.
(2)在圖2中畫△DEF,DE、EF、DF三邊的長分別為、、
①判斷三角形的形狀,說明理由.
②求這個三角形的面積.(直接寫出答案)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知,點是線段所在平面內任意一點,分別以、為邊,在同側作等邊和等邊,聯(lián)結、交于點.
(1)如圖1,當點在線段上移動時,線段與的數(shù)量關系是:________;
(2)如圖2,當點在直線外,且,仍分別以、為邊,在 同側作等邊和等邊,聯(lián)結、交于點.(1)的結論是否還存在?若成立,請證明;若不成立,請說明理由.此時是否隨的大小發(fā)生變化?若變化,寫出變化規(guī)律,若不變,請求出的度數(shù);
(3)如圖3,在(2)的條件下,聯(lián)結,求證: 平分.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com