【題目】已知關(guān)于X的一元二次方程為: 。

(1)當(dāng)方程有兩實(shí)數(shù)根時(shí),求的取值范圍;

(2)任取一個(gè)值,求出方程的兩個(gè)不相等實(shí)數(shù)根。

【答案】

【解析】(1)根據(jù)一元二次方程的根的判別式,建立關(guān)于k的不等式,求出k的取值范圍;
(2)先確定k=12,再根據(jù)方程的根都是整數(shù),可知20-8k是完全平方數(shù),即可求k的值.

解:(1)關(guān)于x的一元二次方程x2+2x+2k-4=0中,
a=1,b=2,c=2k-4,
方程有兩個(gè)不相等的實(shí)數(shù)根,
∴△=b2-4ac=20-8k>0,
k<;
(2)k為正整數(shù),k<
k=12,
方程的根都是整數(shù),
20-8k是完全平方數(shù),
k=2.

點(diǎn)睛“本題考查一元二次方程的根的問(wèn)題,考查學(xué)生的計(jì)算能力,正確運(yùn)用一元二次方程的根的判別式是關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,A點(diǎn)的初始位置位于數(shù)軸上表示1的點(diǎn),現(xiàn)對(duì)A點(diǎn)做如下移動(dòng):第1次向左移動(dòng)3個(gè)單位長(zhǎng)度至B點(diǎn),第2次從B點(diǎn)向右移動(dòng)6個(gè)單位長(zhǎng)度至C點(diǎn),第3次從C點(diǎn)向左移動(dòng)9個(gè)單位長(zhǎng)度至D點(diǎn),第4次從D點(diǎn)向右移動(dòng)12個(gè)單位長(zhǎng)度至E點(diǎn),,依此類推.這樣第_____次移動(dòng)到的點(diǎn)到原點(diǎn)的距離為2018.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,MN是一條東西方向的海岸線,在海岸線上的A處測(cè)得一海島在南偏西32°的方向上,向東走過(guò)780米后到達(dá)B處,測(cè)得海島在南偏西37°的方向,求小島到海岸線的距離

(參考數(shù)據(jù):tan37°= cot53°≈0.755,cot37°= tan53°≈1.327,tan32°= cot58°≈0.625,cot32°= tan58°≈1.600.)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,矩形AOCB的頂點(diǎn)B在反比例函數(shù),x0)的圖像上,且AB=3,BC=8.若動(dòng)點(diǎn)EA開(kāi)始沿ABB以每秒1個(gè)單位長(zhǎng)度的速度運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)FB開(kāi)始沿BCC以每秒2個(gè)單位長(zhǎng)度的速度運(yùn)動(dòng),當(dāng)其中一個(gè)動(dòng)點(diǎn)到達(dá)端點(diǎn)時(shí),另一個(gè)動(dòng)點(diǎn)隨之停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t秒.

1)求反比例函數(shù)的表達(dá)式.

2)當(dāng)t=1時(shí),在y軸上是否存在點(diǎn)D,使△DEF的周長(zhǎng)最?若存在,請(qǐng)求出△DEF的周長(zhǎng)最小值;若不存在,請(qǐng)說(shuō)明理由.

3)在雙曲線上是否存在一點(diǎn)M,使以點(diǎn)BE、FM為頂點(diǎn)的四邊形是平行四邊形?若存在,請(qǐng)求出滿足條件t的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】O的半徑為10cm,AB,CD是⊙O的兩條弦,ABCD,AB=12cm,CD=16cm,求ABCD之間的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀下列材料:如圖(1),在四邊形ABCD中,若AB=ADBC=CD,則把這樣的四邊形稱之為箏形.

(1)寫出箏形的兩個(gè)性質(zhì)(定義除外)

;②

(2)如圖(2),在平行四邊形ABCD中,點(diǎn)E、F分別在BC、CD上,且AE=AF,∠AEC=AFC.求證:四邊形AECF是箏形.

(3)如圖(3),在箏形ABCD中,AB=AD=26,BC=DC=25,AC=17,求箏形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】201923日至2019220日,第一屆成都金沙太陽(yáng)節(jié)在金沙遺址博物館成功舉辦,用世界文明展覽,主題燈展,園林花藝,美食演繹等一系列文化活動(dòng),與瑪雅這一著名的中美洲文明結(jié)下不解之緣,為成都人打造了一個(gè)博物館里的文化年”.春節(jié)當(dāng)天,小杰于下午點(diǎn)乘車從家出發(fā),當(dāng)天按原路返回.如圖,是小杰出行的過(guò)程中,他距家的距離(千米)與他離家的時(shí)間(小時(shí))之間的圖像.根據(jù)圖像,完成下面的問(wèn)題:

1)小杰家距金沙遺址博物館 千米,他乘車去金沙遺址博物館的速度是 千米/小時(shí);

2)已知晚上點(diǎn)時(shí),小杰距家千米,請(qǐng)通過(guò)計(jì)算說(shuō)明他何時(shí)才能回到家?

3)請(qǐng)直接寫出小杰回家過(guò)程中的關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(【材料閱讀】閱讀下列一段文字,然后回答下列問(wèn)題.

已知平面內(nèi)兩點(diǎn)Mx1,y1)、Nx2,y2),則這兩點(diǎn)間的距離可用下列公式計(jì)算:

MN=

例如:已知P3,1)、Q1,2),則這兩點(diǎn)間的距離PQ==

直接應(yīng)用

1)已知A2-3)、B-4,5),試求AB兩點(diǎn)間的距離;

2)已知ABC的頂點(diǎn)坐標(biāo)分別為A0,4)、B﹣1,2)、C42),你能判定ABC的形狀嗎?請(qǐng)說(shuō)明理由.

深度應(yīng)用

3如圖,在平面直角坐標(biāo)系xOy中,二次函數(shù)y=x2﹣4的圖象與x軸相交于兩點(diǎn)A、B,(點(diǎn)A在點(diǎn)B的左邊)

求點(diǎn)A、B的坐標(biāo);

設(shè)點(diǎn)Pmn)是以點(diǎn)C3,4)為圓心、1為半徑的圓上一動(dòng)點(diǎn),求PA2+PB2的最大值;

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四邊形ABCD中,E、F分別是CD、AB延長(zhǎng)線上的點(diǎn),連結(jié)EF,分別交AD、BC于點(diǎn)G、H.若∠1=2,A=C,試說(shuō)明ADBCABCD.

請(qǐng)完成下面的推理過(guò)程,并填空(理由或數(shù)學(xué)式):

∵∠1=2(   

1=AGH(   

∴∠2=AGH(   

ADBC(   

∴∠ADE=C(   

∵∠A=C(   

∴∠ADE=A

ABCD(   

查看答案和解析>>

同步練習(xí)冊(cè)答案