【題目】如圖,在△ABC中,D、E分別是邊AC、BC的中點,F是BC延長線上一點,∠F=∠B.
(l)若AB=1O,求FD的長;
(2)若AC=BC.求證:△CDE∽△DFE .
【答案】(1) FD=5; (2)證明見解析.
【解析】試題分析:(1)利用三角形中位線的性質得出DE∥AB,進而得出∠DEC =∠B,即可得出FD=DE,即可得出答案;
(2)利用等腰三角形的性質和平行線的性質得出∠B=∠A=∠CED=∠CDE,即可得出∠CDE=∠F,即可得出△CDE∽△DFE.
試題解析:解:(1)∵D、E分別是AC、BC的中點,∴.DE//AB, DE=AB=5.
又∵DE//AB,∴∠DEC= ∠B.而∠ F= ∠ B,∴∠DEC =∠B,∴FD=DE=5;
(2)∵AC=BC,∴∠A=∠B.又∠CDE=∠A,∠CED= ∠B,∴∠CDE=∠B.
而∠B=∠F,∴∠CDE=∠F,∠CED=∠DEF,∴△CDE∽△DFE .
科目:初中數學 來源: 題型:
【題目】如圖,直線l1:y=2x+1與直線l2:y=mx+4相交于點P(1,b)
(1)求b,m的值
(2)垂直于x軸的直線x=a與直線l1,l2分別相交于C,D,若線段CD長為2,求a的值
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知銳角三角形ABC內接于⊙O,AD⊥BC,垂足為D.
(1)如圖1, ,BD=DC,求∠B的度數;
(2)如圖2,BE⊥AC,垂足為E,BE交AD于點F,過點B作BG∥AD交⊙O于點G,在AB邊上取一點H,使得AH=BG.求證:△AFH是等腰三角形.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,是交警在一個路口統(tǒng)計的某個時段來往車輛的車速(單位:km/h).
(1)計算這些車的平均速度.
(2)車速的眾數是多少?
(3)車速的中位數是多少?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】關于x的方程 有兩個不相等的實數根.
(1)求k的取值范圍。
(2)是否存在實數k,使方程的兩個實數根的倒數和等于0?若存在,求出k的值;若不存在,說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知∠MAN=120°,點C是∠MAN的平分線AQ上的一個定點,點B,D分別在AN,AM上,連接BD.
【發(fā)現】
(1)如圖1,若∠ABC=∠ADC=90°,則∠BCD= °,△CBD是 三角形;
【探索】
(2)如圖2,若∠ABC+∠ADC=180°,請判斷△CBD的形狀,并證明你的結論;
【應用】
(3)如圖3,已知∠EOF=120°,OP平分∠EOF,且OP=1,若點G,H分別在射線OE,OF上,且△PGH為等邊三角形,則滿足上述條件的△PGH的個數一共有 .(只填序號)
①2個②3個③4個④4個以上
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,若干個全等的正五邊形排成環(huán)狀,圖中所示的是前3個正五邊形,要完成這一圓環(huán)還需正五邊形的個數為( 。
A. 10 B. 9 C. 8 D. 7
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com