【題目】已知二次函數(shù)的圖象經(jīng)過三點(10)(-60)(0,-3).

(1)求該二次函數(shù)的解析式.

(2)若反比例函數(shù)的圖象與二次函數(shù)的圖象在第一象限內(nèi)交于點A(),落在兩個相鄰的正整數(shù)之間,請求出這兩個相鄰的正整數(shù).

(3)若反比例函數(shù)的圖象與二次函數(shù)的圖象在第一象限內(nèi)的交點為B,點B的橫坐標(biāo)為m,且滿足3<m<4,求實數(shù)k的取值范圍.

【答案】1;(212;(3

【解析】

1)已知了拋物線與x軸的交點,可用交點式來設(shè)二次函數(shù)的解析式.然后將另一點的坐標(biāo)代入即可求出函數(shù)的解析式;

2)可根據(jù)(1)的拋物線的解析式和反比例函數(shù)的解析式來聯(lián)立方程組,求出的方程組的解就是兩函數(shù)的交點坐標(biāo),然后找出第一象限內(nèi)交點的坐標(biāo),即可得出符合條件的的值,進而可寫出所求的兩個正整數(shù)即可;

3)點B的橫坐標(biāo)為m,滿足3<m<4,可通過m=3,m=4兩個點上拋物線與反比例函數(shù)的大小關(guān)系即可求出k的取值范圍.

解:(1)∵二次函數(shù)圖像經(jīng)過(10),(-60),(0,-3),

∴設(shè)二次函數(shù)解析式為

將點(0,3)代入解析式得,

;

即二次函數(shù)解析式為;

2)如圖,根據(jù)二次函數(shù)與反比例函數(shù)在第一象限的圖像可知,

當(dāng)時,有;

當(dāng)時,有

故兩函數(shù)交點的橫坐標(biāo)落在12之間,從而得出這兩個相鄰的正整數(shù)為12.

3)根據(jù)函數(shù)圖像性質(zhì)可知:

當(dāng)時,對,隨著的增大而增大,

,隨著的增大而減小,

∵點B為二次函數(shù)與反比例函數(shù)交點,

∴當(dāng)時,,

,解得

同理,當(dāng)時,,

,解得,

的取值范圍為;

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點A的坐標(biāo)是(100),點C、D在以OA為直徑的半圓上,點BOA上,且四邊形OCDB是菱形,則點C的坐標(biāo)為_________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,直線PQ的同側(cè)有兩點M,N,點T在直線PQ上,若∠MTP=∠NTQ,則稱點M,N為關(guān)于直線PQ的衍射點.如圖2,BD是矩形ABCD的對角線,E是邊BC延長線上的一點,且CE=BC,連接AECD于點F,交BD于點P,連接BF,CP

(1)求證:點A,B是關(guān)于直線CD的衍射點.

(2)若點C,F是關(guān)于直線BD的衍射點,CP=2PF=2,求AB的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某政府工作報告中強調(diào),2019年著重推進鄉(xiāng)村振興戰(zhàn)略,做優(yōu)做響湘蓮等特色農(nóng)產(chǎn)品品牌.小亮調(diào)查了一家湘潭特產(chǎn)店兩種湘蓮禮盒一個月的銷售情況,A種湘蓮禮盒進價72元/盒,售價120元/盒,B種湘蓮禮盒進價40元/盒,售價80元/盒,這兩種湘蓮禮盒這個月平均每天的銷售總額為2800元,平均每天的總利潤為1280元.

1)求該店平均每天銷售這兩種湘蓮禮盒各多少盒?

2)小亮調(diào)査發(fā)現(xiàn),種湘蓮禮盒售價每降3元可多賣1盒.若種湘蓮禮盒的售價和銷量不變,當(dāng)種湘蓮禮盒降價多少元/盒時,這兩種湘蓮禮盒平均每天的總利潤最大,最大是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,二次函數(shù)的圖像與軸交于、兩點,與軸交于點,.點在函數(shù)圖像上,軸,且,直線是拋物線的對稱軸,是拋物線的頂點.

(1)求、的值;

(2)如圖,連接,線段上的點關(guān)于直線的對稱點恰好在線段上,求點的坐標(biāo);

(3)如圖,動點在線段上,過點軸的垂線分別與交于點,與拋物線交于點.試問:拋物線上是否存在點,使得的面積相等,且線段的長度最?如果存在,求出點的坐標(biāo);如果不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,點DAB的中點,以CD為直徑作⊙O,⊙O分別與AC,BC交于點E,F(xiàn),過點F⊙O的切線FG,交AB于點G,則FG的長為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】6分)如圖,△ABC三個頂點的坐標(biāo)分別為A2,4),B1,1),C4,3).

1)請畫出△ABC關(guān)于x軸對稱的△A1B1C1,并寫出點A1的坐標(biāo);

2)請畫出△ABC繞點B逆時針旋轉(zhuǎn)90°后的△A2BC2

3)求出(2)中C點旋轉(zhuǎn)到C2點所經(jīng)過的路徑長(記過保留根號和π).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知的半徑為1,的兩條弦,且,延長于點,連接,,若,則=__________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:拋物線

1)求證:拋物線與軸有兩個交點.

2)設(shè)拋物線與軸的兩個交點的橫坐標(biāo)分別為,(其中).若是關(guān)于的函數(shù)、且,求這個函數(shù)的表達式;

3)若,將拋物線向上平移一個單位后與軸交于點、.平移后如圖所示,過作直線,分別交的正半軸于點和拋物線于點,且是線段上一動點,求的最小值.

查看答案和解析>>

同步練習(xí)冊答案