【題目】如圖,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,點D是AB的中點,以CD為直徑作⊙O,⊙O分別與AC,BC交于點E,F(xiàn),過點F作⊙O的切線FG,交AB于點G,則FG的長為_____.
【答案】.
【解析】
先利用勾股定理求出AB=10,進(jìn)而求出CD=BD=5,再求出CF=4,進(jìn)而求出DF=3,再判斷出FG⊥BD,利用面積即可得出結(jié)論.
如圖,
在Rt△ABC中,根據(jù)勾股定理得,AB=10,
∴點D是AB中點,
∴CD=BD=AB=5,
連接DF,
∵CD是⊙O的直徑,
∴∠CFD=90°,
∴BF=CF=BC=4,
∴DF==3,
連接OF,
∵OC=OD,CF=BF,
∴OF∥AB,
∴∠OFC=∠B,
∵FG是⊙O的切線,
∴∠OFG=90°,
∴∠OFC+∠BFG=90°,
∴∠BFG+∠B=90°,
∴FG⊥AB,
∴S△BDF=DF×BF=BD×FG,
∴FG=,
故答案為.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD與四邊形OEFG都是正方形,O是正方形ABCD的中心,OE交BC于點M,OG交CD于點N,下列結(jié)論:①△ODG≌△OCE;②GD=CE;③OG⊥CE;④若正方形ABCD的邊長為2,則四邊形OMCN的面積等于1,其中正確的結(jié)論有( )
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,等邊△ABC中,點D、E分別在BC、AC上,BD=CE,連AD、BE.
(1)求證:△CAD≌△ABE;
(2)如圖2,延長FE至點G,使得FG=FA,連AG,試判斷△AFG的形狀,并說明理由;
(3)在(2)的條件下,連CF,若CF⊥AD,求證:CF⊥CG.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】經(jīng)過某十字路口的汽車,它可能繼續(xù)直行,也可能向左轉(zhuǎn)或向右轉(zhuǎn),如果這三種情況是等可能的,當(dāng)三輛汽車經(jīng)過這個十字路口時:
(1)求三輛車全部同向而行的概率;
(2)求至少有兩輛車向左轉(zhuǎn)的概率;
(3)由于十字路口右拐彎處是通往新建經(jīng)濟開發(fā)區(qū)的,因此交管部門在汽車行駛高峰時段對車流量作了統(tǒng)計,發(fā)現(xiàn)汽車在此十字路口向右轉(zhuǎn)的頻率為,向左轉(zhuǎn)和直行的頻率均為.目前在此路口,汽車左轉(zhuǎn)、右轉(zhuǎn)、直行的綠燈亮的時間分別為30秒,在綠燈亮總時間不變的條件下,為了緩解交通擁擠,請你用統(tǒng)計的知識對此路口三個方向的綠燈亮的時間做出合理的調(diào)整.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某縣教育局今年體育測試中,從某校畢業(yè)班中抽取男,女學(xué)生各15人進(jìn)行三項體育成績復(fù)查測試.在這個問題中,下列敘述正確的是( )
A.該校所有畢業(yè)班學(xué)生是總體B.所抽取的30名學(xué)生是樣本
C.樣本的容量是15D.個體指的是畢業(yè)班每一個學(xué)生的體育測試成績
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在“優(yōu)秀傳統(tǒng)文化進(jìn)校園”活動中,學(xué)校計劃每周二下午第三節(jié)課時間開展此項活動,擬開展活動項目為:剪紙,武術(shù),書法,器樂,要求七年級學(xué)生人人參加,并且每人只能參加其中一項活動.教務(wù)處在該校七年級學(xué)生中隨機抽取了100名學(xué)生進(jìn)行調(diào)查,并對此進(jìn)行統(tǒng)計,繪制了如圖所示的條形統(tǒng)計圖和扇形統(tǒng)計圖(均不完整).
請解答下列問題:
(1)請補全條形統(tǒng)計圖和扇形統(tǒng)計圖;
(2)在參加“剪紙”活動項目的學(xué)生中,男生所占的百分比是多少?
(3)若該校七年級學(xué)生共有500人,請估計其中參加“書法”項目活動的有多少人?
(4)學(xué)校教務(wù)處要從這些被調(diào)查的女生中,隨機抽取一人了解具體情況,那么正好抽到參加“器樂”活動項目的女生的概率是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】宜賓某商店決定購進(jìn)A.B兩種紀(jì)念品.購進(jìn)A種紀(jì)念品7件,B種紀(jì)念品2件和購進(jìn)A種紀(jì)念品5件,B種紀(jì)念品6件均需80元.
(1)求購進(jìn)A、B兩種紀(jì)念品每件各需多少元?
(2)若該商店決定購進(jìn)這兩種紀(jì)念品共100件,考慮市場需求和資金周轉(zhuǎn),用于購買這100件紀(jì)念品的資金不少于750元,但不超過764元,那么該商店共有幾種進(jìn)貨方案?
(3)已知商家出售一件A種紀(jì)念品可獲利a元,出售一件B種紀(jì)念品可獲利(5﹣a)元,試問在(2)的條件下,商家采用哪種方案可獲利最多?(商家出售的紀(jì)念品均不低于成本價)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀:所謂勾股數(shù)就是滿足方程的正整數(shù)解,即滿足勾股定理的三個正整數(shù)構(gòu)成的一組數(shù)我國古代數(shù)學(xué)專著九章算術(shù)一書,在世界上第一次給出該方程的解為:,,,其中,m,n是互質(zhì)的奇數(shù).應(yīng)用:當(dāng)時,求一邊長為8的直角三角形另兩邊的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖①②,試研究其中∠1、∠2與∠3、∠4之間的數(shù)量關(guān)系;
(2)如果我們把∠1、∠2稱為四邊形的外角,那么請你用文字描述上述的關(guān)系式;
(3)用你發(fā)現(xiàn)的結(jié)論解決下列問題:
如圖,AE、DE分別是四邊形ABCD的外角∠NAD、∠MDA的平分線,∠B+∠C=240°,求∠E的度數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com