【題目】已知:拋物線.
(1)求證:拋物線與軸有兩個交點(diǎn).
(2)設(shè)拋物線與軸的兩個交點(diǎn)的橫坐標(biāo)分別為,(其中).若是關(guān)于的函數(shù)、且,求這個函數(shù)的表達(dá)式;
(3)若,將拋物線向上平移一個單位后與軸交于點(diǎn)、.平移后如圖所示,過作直線,分別交的正半軸于點(diǎn)和拋物線于點(diǎn),且.是線段上一動點(diǎn),求的最小值.
【答案】(1)詳見解析;(2);(3)的最小值
【解析】
(1)通過計(jì)算判別式的值,即可得到結(jié)論;
(2)根據(jù)一元二次方程的求根公式,用含a的代數(shù)式表示拋物線與軸的兩個交點(diǎn)的橫坐標(biāo),,即可得到答案;
(3)易得直線,然后聯(lián)立:,求出點(diǎn)C的坐標(biāo),過作軸于點(diǎn)N,過作于點(diǎn),過作軸于點(diǎn),把的最小值化為2(MB+GM)的最小值,即可得到答案.
(1)∵,
,
,
∴拋物線與軸有兩個交點(diǎn);
(2)令,則,
或,
,
且,
,,
,即:;
(3)當(dāng),則,向上平移一個單位得:.
令,則得:,
,,
,
直線,
聯(lián)立: ,解得:,,
即,
過作軸于點(diǎn)N,過作于點(diǎn),過作軸于點(diǎn),
軸,
∴,
,
,
∵MB+GM≥CH,
的最小值=CH=,
的最小值=.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)的圖象經(jīng)過三點(diǎn)(1,0),(-6,0)(0,-3).
(1)求該二次函數(shù)的解析式.
(2)若反比例函數(shù)的圖象與二次函數(shù)的圖象在第一象限內(nèi)交于點(diǎn)A(),落在兩個相鄰的正整數(shù)之間,請求出這兩個相鄰的正整數(shù).
(3)若反比例函數(shù)的圖象與二次函數(shù)的圖象在第一象限內(nèi)的交點(diǎn)為B,點(diǎn)B的橫坐標(biāo)為m,且滿足3<m<4,求實(shí)數(shù)k的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,吊車在水平地面上吊起貨物時,吊繩BC與地面保持垂直,吊臂AB與水平線的夾角為64°,吊臂底部A距地面1.5m.
(1)當(dāng)?shù)醣鄣撞?/span>A與貨物的水平距離AC為5m時,求吊臂AB的長;
(2)如果該吊車吊臂的最大長度AD為20m,那么從地面上吊起貨物的最大高度是多少?(吊鉤的長度與貨物的高度忽略不計(jì),計(jì)算結(jié)果精確到0.1m,參考數(shù)據(jù):sin64°≈0.90,cos64°≈0.44,tan64°≈2.05)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知四邊形ABCD內(nèi)接于圓,對角線AC與BD相交于點(diǎn)E,F在AC上,AB=AD,∠BFC=∠BAD=2∠DFC .
(1)若∠DFC=40,求∠CBF的度數(shù).
(2)求證: CD⊥DF .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線與軸、軸分別相交于、兩點(diǎn),點(diǎn)是的中點(diǎn),點(diǎn)、分別為線段、上的動點(diǎn),將沿折疊,使點(diǎn)的對稱點(diǎn)恰好落在線段上(不與端點(diǎn)重合).連接分別交、于點(diǎn)、,連接.
(1)求的值;
(2)試判斷與的位置關(guān)系,并加以證明;
(3)若,求點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有3張正面分別寫有數(shù)字,0,1的卡片,它們的背面完全相同,現(xiàn)將這3張卡片背面朝上洗勻,小明先從中任意抽出一張卡片記下數(shù)字為x;小亮再從剩下的卡片中任意取出一張記下數(shù)字為y,記作.
用列表或畫樹狀圖的方法列出所有可能的點(diǎn)P的坐標(biāo);
若規(guī)定:點(diǎn)在第二象限小明獲勝;點(diǎn)在第四象限小亮獲勝,游戲規(guī)則公平嗎?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某大學(xué)生創(chuàng)業(yè)團(tuán)隊(duì)抓住商機(jī),購進(jìn)一批干果分裝成營養(yǎng)搭配合理的小包裝后出售,每袋成本3元.試銷期間發(fā)現(xiàn)每天的銷售量(袋與銷售單價(jià)(元之間滿足一次函數(shù)關(guān)系,部分?jǐn)?shù)據(jù)如表所示,其中3.5≤x≤5.5.另外每天還需支付其他各項(xiàng)費(fèi)用80元.
銷售單價(jià)(元 | 3.5 | 5.5 |
銷售量(袋 | 280 | 120 |
(1)請求出與之間的函數(shù)關(guān)系式;
(2)設(shè)每天的利潤為元,當(dāng)銷售單價(jià)定為多少元時,每天的利潤最大?最大利潤是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在菱形中,,.動點(diǎn)從點(diǎn)出發(fā),沿邊以每秒1個單位長度的速度運(yùn)動到點(diǎn)時停止,連接,點(diǎn)與點(diǎn)關(guān)于直線對稱,連接,,設(shè)運(yùn)動時間為(秒).
(1)菱形對角線的長為 ;
(2)當(dāng)點(diǎn)恰在上時,求t的值;
(3)當(dāng)時,求的周長;
(4)直接寫出在整個運(yùn)動過程中,點(diǎn)運(yùn)動的路徑長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,是的直徑,是的切線,切點(diǎn)為,交于點(diǎn),點(diǎn)是的中點(diǎn).
(1)試判斷直線與的位置關(guān)系,并說明理由;
(2)若的半徑為2,,,求圖中陰影部分的周長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com