【題目】反比例函數(shù)y=和y=在第一象限內(nèi)的圖象如圖所示,點(diǎn)P在y=的圖象上,PC⊥x軸,交y=的圖象于點(diǎn)A,PD⊥y軸,交y=的圖象于點(diǎn)B.當(dāng)點(diǎn)P在y=的圖象上運(yùn)動(dòng)時(shí),以下結(jié)論:①△ODB與△OCA的面積相等;②PA與PB始終相等;③四邊形PAOB的面積不會(huì)發(fā)生變化;④當(dāng)點(diǎn)A是PC的中點(diǎn)時(shí),點(diǎn)B一定是PD的中點(diǎn).其中一定正確的是( 。
A. B. C. D.
【答案】D
【解析】
①由點(diǎn)A、B均在反比例函數(shù)的圖象上,利用反比例函數(shù)系數(shù)k的幾何意義即可得出S△ODB=S△OCA,結(jié)論①正確;③利用分割圖形求面積法即可得出S四邊形PAOB=k-1,結(jié)論③正確;②設(shè)點(diǎn)P的坐標(biāo)為,則點(diǎn)B的坐標(biāo),點(diǎn)A,求出PA、PB的長(zhǎng)度,由此可得出PA與PB的關(guān)系無(wú)法確定,結(jié)論②錯(cuò)誤;④設(shè)點(diǎn)P的坐標(biāo)為,則點(diǎn)B的坐標(biāo),點(diǎn)A,由點(diǎn)A是PC的中點(diǎn)可得出k=2,將其帶入點(diǎn)P、B的坐標(biāo)即可得出點(diǎn)B是PD的中點(diǎn),結(jié)論④正確.此題得解.
解:①∵點(diǎn)A、B均在反比例函數(shù)的圖象上,且BD⊥y軸,AC⊥x軸,
∴
∴S△ODB=S△OCA,結(jié)論①正確;
②設(shè)點(diǎn)P的坐標(biāo)為,則點(diǎn)B的坐標(biāo),點(diǎn)A,
∴
∴PA與PB的關(guān)系無(wú)法確定,結(jié)論②錯(cuò)誤;
③∵點(diǎn)P在反比例函數(shù)的圖象上,且PC⊥x軸,PD⊥y軸,
∴S矩形OCPD=k,
∴S四邊形PAOB=S矩形OCPD-S△ODB-S△OCA=k-1,結(jié)論③正確;
④設(shè)點(diǎn)P的坐標(biāo)為,則點(diǎn)B的坐標(biāo),點(diǎn)A,
∵點(diǎn)A是PC的中點(diǎn),
∴k=2,
∴P,B,
∴點(diǎn)B是PD的中點(diǎn),結(jié)論④正確.
故選:D.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知如圖,拋物線的頂點(diǎn)D的坐標(biāo)為(1,-4),且與y軸交于點(diǎn)
C(0,3)
求該函數(shù)的關(guān)系式;
求改拋物線與x軸的交點(diǎn)A,B的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,二次函數(shù)的圖象與軸交于點(diǎn)A、B,與y軸交于點(diǎn)C,點(diǎn)A的坐標(biāo)為(-4,0),P是拋物線上一點(diǎn) (點(diǎn)P與點(diǎn)A、B、C不重合).
(1)b= ,點(diǎn)B的坐標(biāo)是 ;
(2)設(shè)直線PB直線AC交于點(diǎn)M,是否存在這樣的點(diǎn)P,使得PM:MB=1:2?若存在,求出點(diǎn)P的橫坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;
(3)連接AC、BC,判斷∠CAB和∠CBA的數(shù)量關(guān)系,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c的圖象對(duì)稱軸為x=,圖象交x軸于A,B,交y軸于C(0,-3),且AB=5,直線y=kx+b(k>0)與二次函數(shù)圖象交于M,N(M在N的右邊),交y軸于P.
(1)求二次函數(shù)圖象的解析式;
(2)若b=-5,且△CMN的面積為3,求k的值;
(3)若b=-3k,直線AN交y軸于Q,求的值或取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】.如圖,在平面直角坐標(biāo)系中,以點(diǎn)C(1,1)為圓心,2為半徑作圓,交x軸于A,B兩點(diǎn),點(diǎn)P在優(yōu)弧上.
(1)求出A,B兩點(diǎn)的坐標(biāo);
(2)試確定經(jīng)過(guò)A、B且以點(diǎn)P為頂點(diǎn)的拋物線解析式;
(3)在該拋物線上是否存在一點(diǎn)D,使線段OP與CD互相平分?若存在,求出點(diǎn)D的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】先閱讀,然后解答提出的問(wèn)題:
設(shè) m,n 是有理數(shù),且滿足 m+n=2﹣3 ,求 nm 的值.
解:由題意,移項(xiàng)得,(m﹣2)+(n+3)=0,
∵m、n 是有理數(shù),∴m﹣2,n+3 也是有理數(shù),
又∵ 是有理數(shù),∴m﹣2=0,n+3=0,∴m=2,n=﹣3
∴nm=(﹣3)2=9.
問(wèn)題解決:設(shè) a、b 都是有理數(shù),且 a2+b=16+5,求2﹣5b的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在Rt△ABC中,∠ACB=90°,BE平分∠ABC,D是邊AB上一點(diǎn),以BD為直徑的⊙O經(jīng)過(guò)點(diǎn)E,且交BC于點(diǎn)F.
(1)求證:AC是⊙O的切線;
(2)若BF=6,⊙O的半徑為5,求CE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB是⊙O的直徑,弦CD交AB于點(diǎn)P,AP=2,BP=6,∠APC=30°,則CD的長(zhǎng)為( 。
A. B. 2 C. 2 D. 8
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了解某中學(xué)學(xué)生課余生活情況,對(duì)喜愛(ài)看課外書、體育活動(dòng)、看電視、社會(huì)實(shí)踐四個(gè)方面的人數(shù)進(jìn)行調(diào)查統(tǒng)計(jì).現(xiàn)從該校隨機(jī)抽取名學(xué)生作為樣本,采用問(wèn)卷調(diào)查的方法收集數(shù)據(jù)(參與問(wèn)卷調(diào)查的每名學(xué)生只能選擇其中一項(xiàng)).并根據(jù)調(diào)查得到的數(shù)據(jù)繪制成了如圖所示的兩幅不完整的統(tǒng)計(jì)圖.由圖中提供的信息,解答下列問(wèn)題:
(1)求n的值;
(2)若該校學(xué)生共有1200人,試估計(jì)該校喜愛(ài)看電視的學(xué)生人數(shù);
(3)若調(diào)查到喜愛(ài)體育活動(dòng)的4名學(xué)生中有3名男生和1名女生,現(xiàn)從這4名學(xué)生中任意抽取2名學(xué)生,求恰好抽到2名男生的概率.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com