分析 問題:根據(jù)品牌形象的性質(zhì)得到∠D=∠B,∠E=∠G,然后根據(jù)全等三角形的判定即可得到結(jié)論.
拓展一:連接CF,直角△DEB中,EF是斜邊BD上的中線,因此EF=DF=BF,∠FEB=∠FBE,同理可得出CF=DF=BF,∠FCB=∠FBC,因此CF=EF,由于∠DFE=∠FEB+∠FBE=2∠FBE,同理∠DFC=2∠FBC,因此∠EFC=∠EFD+∠DFC=2(∠EBF+∠CBF)=90°,因此△EFC是等腰直角三角形,CF=$\sqrt{2}$EF;
拓展二:可證三角形DHP和PGF全等,已知的有DC∥GF,根據(jù)平行線間的內(nèi)錯角相等可得出兩三角形中兩組對應(yīng)的角相等,又有DP=PF,因此構(gòu)成了全等三角形判定條件中的(ASA),于是兩三角形全等,那么HP=PG,可根據(jù)三角函數(shù)來得出PG、CG的比例關(guān)系.
解答 問題:證明:∵DE∥GB,
∴∠D=∠B,∠E=∠G,
在△DEF和△BGF中,
$\left\{\begin{array}{l}{∠D=∠B}\\{DE=BG}\\{∠E=∠G}\end{array}\right.$,
∴△DEF≌△BGF.
拓展一:解:如圖,連結(jié)CF、AF,
∵AC=BC,AE=DE,∠DEA=∠BCA=90°,
∴∠DAE=∠CAB=45°,
∴∠BAD=∠BAC+∠DAE=45°+45°=90°,
又∵點F是BD的中點,
∴FA=FB=FD,
在△ACF和△BCF中,$\left\{\begin{array}{l}{FA=FB}\\{AC=BC}\\{CF=CF}\end{array}\right.$,
∴△ACF≌△BCF,
∴∠ACF=∠BCF=$\frac{1}{2}$∠ACB=45°,
∵FA=FB,CA=CB,
∴CF所在的直線垂直平分線段AB,
同理,EF所在的直線垂直平分線段AD,
又∵DA⊥BA,
∴EF⊥CF,
∴△CEF為等腰直角三角形,
∴CE=EF;
拓展二:解:若CP⊥PG,四邊形ABCD是菱形,
如圖3,
設(shè)GP交DC交于點H,
∵四邊形ABCD∽四邊形BEFG,
∴四邊形BFEG是菱形,
∵P是線段DF的中點,
∴FP=DP,
由題意可知DC∥GF,
∴∠GFP=∠HDP,
在△GFP和△HDP中$\left\{\begin{array}{l}{∠GPF=∠HPD}\\{PF=DP}\\{∠GFP=∠HDP}\end{array}\right.$,
∴△GFP≌△HDP(ASA),
∴GP=HP,GF=HD,
∵四邊形ABCD是菱形,
∴CD=CB,
∴CG=CH,
∴△CHG是等腰三角形,
∴PG⊥PC;
若CP⊥PG、且PC=$\sqrt{3}$PG,四邊形ABCD是菱形,且∠A=60°,
∵∠DCB=∠A=60°,
∴∠PCG=30°,
∴∠CGP=60°,
∴tan∠PGC=$\frac{PC}{PG}$=$\sqrt{3}$,
∴PC=$\sqrt{3}$PG.
故答案為:菱形,菱形,∠A=60°.
點評 本題考查了菱形的性質(zhì):菱形具有平行四邊形的一切性質(zhì);菱形的四條邊都相等;菱形的兩條對角線互相垂直,并且每一條對角線平分一組對角.也考查了全等三角形的判定與性質(zhì)和等腰三角形的性質(zhì).
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | (-2,1) | B. | (1,-2) | C. | (-2,-2) | D. | (1,2) |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 300名考生的數(shù)學(xué)成績 | B. | 300 | ||
C. | 1.33萬名考生的數(shù)學(xué)成績 | D. | 300名考生 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com