【題目】古希臘數(shù)學家畢達哥拉斯認為:“一切平面圖形中最美的是圓”.請研究如下美麗的圓.如圖,線段AB是⊙O的直徑,延長AB至點C,使BC=OB,點E是線段OB的中點,DE⊥AB交⊙O于點D,點P是⊙O上一動點(不與點A,B重合),連接CD,PE,PC.
(1)求證:CD是⊙O的切線;
(2)小明在研究的過程中發(fā)現(xiàn)是一個確定的值.回答這個確定的值是多少?并對小明發(fā)現(xiàn)的結論加以證明.
【答案】(1)見解析;(2),解析
【解析】
本題考查了切線的判定與性質(zhì)及相似三角形的判定與性質(zhì).(1)連接OD,DB,由已知可得DE垂直平分OB,于是DB=DO,而OB=OD,所以DB=DO=OB,即△ODB是等邊三角形,于是∠BDO=60°,再由等腰三角形的性質(zhì)及三角形的外角性質(zhì)可得∠CDB=30°,從而可得∠ODC=90°,所以OD⊥CD,所以CD是⊙O的切線;(2)連接OP,由已知條件得OP=OB=BC=2OE,再利用“兩組邊成比例,夾角相等”證明△OEP∽△OPC,最后由相似三角形的對應邊成比例得到結論.
解:(1)如答圖,連接OD,DB,∵點E是線段OB的中點,DE⊥AB交⊙O于點D,∴DE垂直平分OB,∴DB=DO.∵DO=OB,∴DB=DO=OB,∴△ODB是等邊三角形,∴∠BDO=∠DBO=60°.∵BC=OB=BD,且∠DBE為△BDC的外角,∴∠BCD=∠BDC=∠DBO.∵∠DBO=60°,∴∠CDB=30°.∴∠ODC=∠BDO+∠BDC=60°+30°=90°,∴OD⊥CD,∴CD是⊙O的切線;
(2)這個確定的值是.
證明:如答圖,連接OP,∵OP=OB=BC=2OE,∴==,又∵∠COP=∠POE,∴△OEP∽△OPC,∴==.
科目:初中數(shù)學 來源: 題型:
【題目】已知,拋物線y=m與y軸交于點C,與x軸交于點A和點B(其中點A在y軸左側(cè),點B在y軸右側(cè)).
(1)若拋物線y=m的對稱軸為直線x=1,求拋物線的解析式;
(2)如圖1,∠ACB=90°,點P是拋物線y=m上的一點,若S△BCP=,求點P的坐標;
(3)如圖2,過點A作AD∥BC交拋物線于點D,若點D的縱坐標為﹣m,求直線AD的解析式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠CAB=120°,AB=AC=3,點E是三角形ABC 內(nèi)一點,且滿足則點E 在運動過程中所形成的圖形的長為 ( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】廣州融創(chuàng)樂園是國內(nèi)首個以南越文化、嶺南風格為主題的游樂園,自2019年6月開園以來受到了國內(nèi)外游客的熱捧.某旅游團組織一批游客游玩了樂園內(nèi)的四個網(wǎng)紅項目,“A.雙龍飛舞”、“B.飛躍廣東”、“C.云霄塔”、“D.怒?駶,并進行了“我最喜歡的一個項目”的投票評選活動,投票結果繪制成以下兩幅尚未完整的統(tǒng)計圖.請你根據(jù)圖中提供的信息,解答下列問題:
(1)參與投票的游客總?cè)藬?shù)為 人;
(2)扇形統(tǒng)計圖中B所對的圓心角度數(shù)為 度,并補全條形統(tǒng)計圖;
(3)從投票給“雙龍飛舞“的3名男生和1名女生中隨機抽取2名了解情況,請你用列舉法求恰好抽到1男1女的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+4交y軸于點A,交過點A且平行于x軸的直線于另一點B,交x軸于C,D兩點(點C在點D右邊),對稱軸為直線x=,連接AC,AD,BC.若點B關于直線AC的對稱點恰好落在線段OC上,下列結論中錯誤的是( )
A.點B坐標為(5,4)B.AB=ADC.a=D.OCOD=16
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線y=﹣x+b與x、y軸的正半軸交于點A,B,與雙曲線y=﹣交于點C(點C在第二象限內(nèi)),點D,過點C作CE⊥x軸于點E,記四邊形OBCE的面積為S1,△OBD的面積為S2,若=,則b的值為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB為⊙O的直徑,P為BA延長線上一點,點C在⊙O上,連接PC,D為半徑OA上一點,PD=PC,連接CD并延長交⊙O于點E,且E是的中點.
(1)求證:PC是⊙O的切線;
(2)求證:CDDE=2ODPD;
(3)若AB=8,CDDE=15,求PA的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】點C為線段上一點,以為斜邊作等腰,連接,在外側(cè),以為斜邊作等腰,連接.
(1)如圖1,當時:
①求證:;
②判斷線段與的數(shù)量關系,并證明;
(2)如圖2,當時,與的數(shù)量關系是否保持不變?
對于以上問題,小牧同學通過觀察、實驗,形成了解決該問題的幾種思路:
想法1:嘗試將點D為旋轉(zhuǎn)中心,過點D作線段垂線,交延長線于點G,連接;通過證明解決以上問題;
想法2:嘗試將點D為旋轉(zhuǎn)中心,過點D作線段垂線,垂足為點G,連接.通過證明解決以上問題;
想法3:嘗試利用四點共圓,過點D作垂線段,連接,通過證明D、F、B、E四點共圓,利用圓的相關知識解決以上問題.
請你參考上面的想法,證明(一種方法即可).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】將一大、一小兩個等腰直角三角形拼在一起,,連接.
(1)如圖1,若三點在同一條直線上,則與的關系是 ;
(2)如圖2,若三點不在同一條直線上,與相交于點,連接,猜想之間的數(shù)量關系,并給予證明;
(3)如圖3,在(2)的條件下作的中點,連接,直接寫出與之間的關系.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com