【題目】如圖,△ABC是等邊三角形,D,E分別是AC,BC邊上的點(diǎn),且AD=CE,連接BD,AE相交于點(diǎn)F.
(1)∠BFE的度數(shù)是多少;
(2)如果,那么等于多少;
(3)如果時,請用含n的式子表示AF,BF的數(shù)量關(guān)系,并證明.
【答案】(1)∠BFE=60°;(2)=1;(3).證明見解析.
【解析】
(1)易證△ABD≌△ACE,可得∠DAF=∠ABF,根據(jù)外角等于不相鄰兩個內(nèi)角的和即可解題.
(2)如圖1中,當(dāng)=時,由題意可知:AD=CD,BE=CE.利用等腰三角形的性質(zhì)即可解決問題;
(3)設(shè)AF=x,BF=y,AB=BC=AC=n.AD=CE=1,由△ABD≌△CAE,推出BD=AE,設(shè)BD=AE=m,利用相似三角形的性質(zhì),列出關(guān)系式即可解決問題;
(1)∵△ABC是等邊三角形,
∴AB=AC,∠BAD=∠C=60°,
在△ABD和△ACE中,
,
∴△ABD≌△ACE(SAS)
∴∠DAF=∠ABD,
∴∠BFE=∠ABD+∠BAF=∠DAF+∠BAF=∠BAD=60°,
(2)如圖1中,當(dāng)=時,由題意可知:AD=CD,BE=CE.
∵△ABC是等邊三角形,BE=EC,AD=CD,
∴∠BAE=∠BAC=×60°=30°,∠ABD=∠ABC=30°,
∴∠FAB=∠FBA,
∴FA=FB,
∴=1.
(3)設(shè)AF=x,BF=y(tǒng),AB=BC=AC=n.AD=CE=1,
∵△ABD≌△CAE,
∴BD=AE,∠DAF=∠ABD,設(shè)BD=AE=m,
∵∠ADF=∠BDA,
∴△ADF∽△BDA,
∴,
∴①,
∵∠FBE=∠CBD,∠BFE=∠C=60°,
∴△BFE∽△BCD,
∴,
∴②,
①÷②得到:,
∴.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,AB=4,P是BC邊上一動點(diǎn)(不與B,C重合),DE⊥AP于E.
(1)試說明△ADE∽△PAB;
(2)若PA=x,DE=y,請寫出y與x之間的函數(shù)關(guān)系式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,已知拋物線y= 與x軸交于點(diǎn)A(﹣2,0)和點(diǎn)B,與y軸交于點(diǎn)C(0,﹣3),經(jīng)過點(diǎn)A的射線AM與y軸相交于點(diǎn)E,與拋物線的另一個交點(diǎn)為F,且.
(1)求這條拋物線的表達(dá)式,并寫出它的對稱軸;
(2)求∠FAB的余切值;
(3)點(diǎn)D是點(diǎn)C關(guān)于拋物線對稱軸的對稱點(diǎn),點(diǎn)P是y軸上一點(diǎn),且∠AFP=∠DAB,求點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)A,B,C都在拋物線y=ax2﹣2amx+am2+2m﹣5(其中﹣<a<0)上,AB∥x軸,∠ABC=135°,且AB=4.
(1)填空:拋物線的頂點(diǎn)坐標(biāo)為 (用含m的代數(shù)式表示);
(2)求△ABC的面積(用含a的代數(shù)式表示);
(3)若△ABC的面積為2,當(dāng)2m﹣5≤x≤2m﹣2時,y的最大值為2,求m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,C是⊙O上一點(diǎn),連接AC.過點(diǎn)B作⊙O的切線,交AC的延長線于點(diǎn)D,在AD上取一點(diǎn)E,使AE=AB,連接BE,交⊙O于點(diǎn)F.
請補(bǔ)全圖形并解決下面的問題:
(1)求證:∠BAE=2∠EBD;
(2)如果AB=5,sin∠EBD=.求BD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校八年級生物興趣小組租兩艘快艇去微山湖生物考察,他們從同一碼頭出發(fā),第一艘快艇沿北偏西70°方向航行50千米,第二艘快艇沿南偏西20°方向航行50千米,如果此時第一艘快艇不動,第二艘快艇向第一艘快艇靠攏,那么第二艘快艇航行的方向和距離分別是( 。
A. 南偏東,千米 B. 北偏西,千米
C. 南偏東,100千米 D. 北偏西,100千米
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y1=k1x+b的圖象與反比例函數(shù)y2=的圖象相交于A,B兩點(diǎn),與x軸交于點(diǎn)C,與y軸交于點(diǎn)D,點(diǎn)B的坐標(biāo)是(m,-4),連接AO,AO=5,sin∠AOC=.
(1)求反比例函數(shù)的解析式;
(2)連接OB,求△AOB的面積;
(3)請直接寫出當(dāng)x<m時,y2的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角坐標(biāo)系中,直線y=6-x與雙曲線y=(x>0)的圖象相交于點(diǎn)A,B,設(shè)點(diǎn)A的坐標(biāo)為(m,n),那么以m為長、n為寬的矩形的面積和周長分別為( )
A. 4,6 B. 4,12 C. 8,6 D. 8,12
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在邊長為的正方形中,點(diǎn)為邊上的一個動點(diǎn)(與點(diǎn)、不重合),,交對角線于點(diǎn),交對角線于點(diǎn),交于點(diǎn).
如圖,聯(lián)結(jié),求證:,并寫出的值;
聯(lián)結(jié),如圖,若設(shè),,求關(guān)于的函數(shù)解析式,并寫出函數(shù)的定義域;
當(dāng)為邊的三等分點(diǎn)時,求的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com