【題目】如圖,在矩形中,分別是、的中點,、分別是的中點.

求證:四邊形是菱形;

,求四邊形的面積.

【答案】(1)見解析;(2)2

【解析】

(1)連接MN,證明四邊形AMNB是矩形,得出∠MNB=90°,根據(jù)直角三角形斜邊上的中線性質(zhì)即可得出結(jié)論;
(2)先證明四邊形MPNQ是平行四邊形,再由(1)即可得出結(jié)論.

證明:∵四邊形是矩形,

,

、分別、的中點,

,

∴四邊形是平行四邊形,

,

、分別、的中點,

,

∴四邊形是平行四邊形,

連接,

∵四邊形是矩形,

,,

分別、的中點,

,

∴四邊形是矩形,

,

中點,

,

∴四邊形是菱形.

,中點,中點,

∴平行四邊形的面積是,

的面積是,

的面積是,

同理的面積是

∴四邊形的面積是

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB=AC=8,BAC=90,直線l與以AB為直徑的⊙O相切于點B,點D是直線l上任意一動點,連結(jié)DA交⊙OE.

(1)當點DAB上方且BD=6時,求AE的長;

(2)當CE恰好與⊙O相切時,求BD的長為多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知:E是∠AOB的平分線上一點,ECOB,EDOA,C、D是垂足,連接CD,且交OE于點F.

1)求證:DF=CF.

2)若∠AOB=60,請你探究OEEF之間有什么數(shù)量關(guān)系?并證明你的結(jié)論。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形中,,相交于點,平分于點,若,則________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知ABC中,ADBC邊上的高,CE平分∠ACBADCE相交于點F.B=65°,∠AFC=120°,求∠BAD和∠ACB的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABCD中,AM,CN分別是∠BAD和∠BCD的平分線,添加一個條件,仍無法判斷四邊形AMCN為菱形的是(

A.AM=AN B.MN⊥AC

C.MN是∠AMC的平分線 D.∠BAD=120°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,點O是△ABC內(nèi)一點,且點O到△ABC三個頂點的距離相等,若∠A70°,則∠BOC_____________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正比例函數(shù)y=2x的圖象與一次函數(shù)y=kx+b的圖象交于點A(m,2),一次函數(shù)的圖象經(jīng)過點B(2,1).

(1)求一次函數(shù)的解析式;

(2)請直接寫出不等式組1<kx +b<2x的解集。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,Rt△ABC,∠ACB=90°,∠B=30°,AD∠CAB的角平分線,CD=3,則DB等于(

A.3B.C.6D.2

查看答案和解析>>

同步練習冊答案