【題目】如圖,在正方形ABCD中,點M、N分別在AB、BC上,AB=4,AM=1,BN=.
(1)求證:ΔADM∽ΔBMN;
(2)求∠DMN的度數.
科目:初中數學 來源: 題型:
【題目】某居民小區(qū)一處圓柱形的輸水管道破裂,維修人員為更換管道,需確定管道圓形截面的半徑,下圖是水平放置的破裂管道有水部分的截面.
⑴請你補全這個輸水管道的圓形截面;
⑵若這個輸水管道有水部分的水面寬AB=16cm,水面最深地方的高度為4cm,求這個圓形截面的半徑.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】隨著夏季的到來,各類水果自然也成了大眾喜愛的消費產品.已知某水果店第一次售出蘋果和芒果共200千克,其中蘋果的售價為24元/千克,芒果的售價為20元/千克,總銷售額為4320元.
(1)求水果店第一次售出蘋果和芒果各多少千克;
(2)通過最近的調查發(fā)現消費者更加青睞于購買芒果,經銷售統(tǒng)計發(fā)現與第一次相比,芒果的售價每降低1元,銷量就增加20千克,蘋果的售價和銷量均保持不變,如果第二次的蘋果和芒果全部售完比第一次的總銷售額多980元,求第二次芒果的售價.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在平面直角坐標系中,我們定義直線y=ax-a為拋物線y=ax2+bx+c(a、b、c為常數,a≠0)的“衍生直線”;有一個頂點在拋物線上,另有一個頂點在y軸上的三角形為其“衍生三角形”.已知拋物線與其“衍生直線”交于A、B兩點(點A在點B的左側),與x軸負半軸交于點C.
(1)填空:該拋物線的“衍生直線”的解析式為 ,點A的坐標為 ,點B的坐標為 ;
(2)如圖,點M為線段CB上一動點,將△ACM以AM所在直線為對稱軸翻折,點C的對稱點為N,若△AMN為該拋物線的“衍生三角形”,求點N的坐標;
(3)當點E在拋物線的對稱軸上運動時,在該拋物線的“衍生直線”上,是否存在點F,使得以點A、C、E、F為頂點的四邊形為平行四邊形?若存在,請直接寫出點E、F的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某商品的進價為每件30元,現在的售價為每件40元,每星期可賣出200件.市場調查反映:如果每件的售價每漲1元,那么每星期少賣10件.設每件漲價x元,每星期的銷量為y件.
(1)求y與x的函數關系式;
(2)如何定價才能使每星期的利潤最大且每星期的銷量較大?每星期的最大利潤是多少?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】老師隨機抽查了本學期學生讀課外書冊數的情況,繪制成條形圖(圖1)和不完整的扇形圖(圖2),其中條形圖被墨跡遮蓋了一部分.
(1)求條形圖中被遮蓋的數,并計算冊數的平均數和中位數;
(2)隨后又補查了另外幾人,得知最少的讀了6冊,將其與之前的數據合并后,發(fā)現冊數的中位數沒改變,則最多補查了__________人.從補查結果看,學生的讀書冊數的平均數與之前相比______________.(變大、變小、不變).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知二次函數y=﹣x2+2bx+c的圖象經過點M(1,0),頂點坐標(m,n)
(1)當x<5時,y隨x的增大而增大,求b的取值范圍;
(2)求n關于m的函數解析式;
(3)求該二次函數的圖象頂點最低時的解析式.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在中,點為邊的中點,以點為頂點的的兩邊分別與邊,交于點,,且與互補.
(1)如圖1,若,且,請直接寫出:線段與的數量關系______;
(2)如圖2,若,請直接寫出:線段與的數量關系______;
(3)如圖3,若,探索線段與的數量關系,并證明你的結論.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,點O為平面直角坐標系的原點,點A在x軸上,△OAB是邊長為4的等邊三角形,以O為旋轉中心,將△OAB按順時針方向旋轉60°,得到△OA′B′,那么點A′的坐標為( 。
A. (2,2) B. (﹣2,4) C. (﹣2,2) D. (﹣2,2)
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com