【題目】如圖,對折矩形紙片ABCD,使ADBC重合,得到折痕EF,把紙片展平,再一次折疊紙片,使點A落在EF上的點A′處,并使折痕經(jīng)過點B,得到折痕BM,若矩形紙片的寬AB=4,則折痕BM的長為( )

A.B.C.8D.

【答案】A

【解析】

根據(jù)折疊性質可得BE=ABA′B=AB=4,∠BA′M=∠A=90°∠ABM=∠MBA′,可得∠EA′B=30°,根據(jù)直角三角形兩銳角互余可得∠EBA′=60°,進而可得∠ABM=30°,在Rt△ABM中,利用∠ABM的余弦求出BM的長即可.

∵對折矩形紙片ABCD,使ADBC重合,AB=4,

BE=AB=2,∠BEF=90°,

∵把紙片展平,再一次折疊紙片,使點A落在EF上的點A’處,并使折痕經(jīng)過點B,

A′B=AB=4,∠BA′M=A=90°,∠ABM=MBA′,

∴∠EA′B=30°,

∴∠EBA′=60°

∴∠ABM=30°,

Rt△ABM中,AB=BMcos∠ABM,即4=BMcos30°

解得:BM=,

故選A.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】光線從空氣射入水中會發(fā)生折射現(xiàn)象,發(fā)生折射時,滿足的折射定律如圖①所示:折射率代表入射角,代表折射角).小明為了觀察光線的折射現(xiàn)象,設計了圖②所示的實驗;通過細管可以看見水底的物塊,但從細管穿過的直鐵絲,卻碰不上物塊,圖③是實驗的示意圖,點A,C,B在同一直線上,測得,則光線從空射入水中的折射率n等于________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在一個不透明的口袋中裝有3張相同的紙牌,它們分別標有數(shù)字3,﹣1,2,隨機摸出一張紙牌不放回,記錄其標有的數(shù)字為x,再隨機摸取一張紙牌,記錄其標有的數(shù)字為y,這樣就確定點P的一個坐標為(xy)

1)用列表或畫樹狀圖的方法寫出點P的所有可能坐標;

2)寫出點P落在雙曲線上的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】O直徑AB12cm,AMBN是⊙O的切線,DC切⊙O于點E且交AM于點D,交BN于點C,設ADx,BCy

1)求yx之間的關系式;

2x,y是關于t的一元二次方程2t230t+m0的兩個根,求x,y的值;

3)在(2)的條件下,求△COD的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在△ABC中,DBC邊的中點,E、F分別在AD及其延長線上,CEBF,連接BECF

1)求證:△BDF≌△CDE;

2)若AB=AC,試判斷四邊形BFCE是怎樣的四邊形,并證明你的結論.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在⊙中,AB是直徑,BC是弦,BC=BD,連接CD交⊙于點E,∠BCD=∠DBE.

1)求證:BD是⊙的切線.

2)過點EEFABF,交BCG,已知DE=,EG=3,求BG的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在四邊形ABCD中,對角線AC、BD相交于點O,將△COD繞點O按逆時針方向旋轉得到△C1OD1,旋轉角為θ0°<θ90°),連接AC1、BD1AC1BD1交于點P

1)如圖1,若四邊形ABCD是正方形.

求證:△AOC1≌△BOD1

請直接寫出AC1 BD1的位置關系.

2)如圖2,若四邊形ABCD是菱形,AC5BD7,設AC1kBD1.判斷AC1BD1的位置關系,說明理由,并求出k的值.

3)如圖3,若四邊形ABCD是平行四邊形,AC5,BD10,連接DD1,設AC1kBD1.請直接寫出k的值和AC12+kDD12的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在菱形ABCD中,∠A120°,點EBC邊的中點,點P是對角線BD上一動點,設PD的長度為x,PEPC的長度和為y,圖2y關于x的函數(shù)圖象,其中H是圖象上的最低點,則a+b的值為(  )

A.7B.C.D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC中,∠C=90°,BD平分∠ABC,點O是邊AB上一點,以點O為圓心,以OB為半徑作圓,⊙O恰好經(jīng)過點D

1)求證:直線AC是⊙O的切線;

2)若∠A=30°,⊙O的半徑是2,求線段CD的長.

查看答案和解析>>

同步練習冊答案