【題目】某超市促銷(xiāo)活動(dòng),將A,B,C三種水果采用甲、乙、丙三種方式搭配裝進(jìn)禮盒進(jìn)行銷(xiāo)售.每盒的總成本為盒中A,B,C三種水果成本之和,盒子成本忽略不計(jì).甲種方式每盒分別裝A,BC三種水果6kg,3kg,1kg;乙種方式每盒分別裝A,BC三種水果2kg,6kg,2kg.甲每盒的總成本是每千克A水果成本的12.5倍,每盒甲的銷(xiāo)售利潤(rùn)率為20%;每盒甲比每盒乙的售價(jià)低25%;每盒丙在成本上提高40%標(biāo)價(jià)后打八折出售,獲利為每千克A水果成本的1.2倍.當(dāng)銷(xiāo)售甲、乙、丙三種方式搭配的禮盒數(shù)量之比為225時(shí),則銷(xiāo)售總利潤(rùn)率為_____.(利潤(rùn)率=利潤(rùn)÷成本×100%

【答案】20%

【解析】

分別設(shè)每千克A、BC三種水果的成本為x、yz,設(shè)丙每盒成本為m,然后根據(jù)題意將甲、乙、丙三種方式的每盒成本和利潤(rùn)用x表示出來(lái)即可求解.

設(shè)每千克A、B、C三種水果的成本分別為為x、yz,依題意得:

,

∴每盒甲的銷(xiāo)售利潤(rùn)

乙種方式每盒成本,

乙種方式每盒售價(jià),

∴每盒乙的銷(xiāo)售利潤(rùn),

設(shè)丙每盒成本為,依題意得:,

解得:

∴當(dāng)銷(xiāo)售甲、乙、丙三種方式的水果數(shù)量之比為225時(shí),

總成本為:,

總利潤(rùn)為:,

銷(xiāo)售的總利潤(rùn)率為:×100%20%,

故答案為:20%

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖:拋物線yx2+bx+c與直線y=﹣x1交于點(diǎn)A,B.其中點(diǎn)B的橫坐標(biāo)為2.點(diǎn)Pm,n)是線段AB上的動(dòng)點(diǎn).

1)求拋物線的表達(dá)式;

2)過(guò)點(diǎn)P的直線垂直于x軸,交拋物線于點(diǎn)Q,求線段PQ的長(zhǎng)度lm的關(guān)系式,m為何值時(shí),PQ最長(zhǎng)?

3)在平角直角坐標(biāo)系中,我們把橫、縱坐標(biāo)都為整數(shù)的點(diǎn)稱為整點(diǎn),記頂點(diǎn)都是整點(diǎn)的四邊形為整點(diǎn)四邊形,在(2)的情況下,在平面內(nèi)找出所有符合要求的整點(diǎn)R,使P、QB、R為整點(diǎn)平行四邊形,請(qǐng)直接寫(xiě)出整點(diǎn)R的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖直線x軸、y軸分別交于點(diǎn)A,B,C的中點(diǎn),點(diǎn)D在直線上,以為直徑的圓與直線的另一交點(diǎn)為E,交y軸于點(diǎn)F,G,已知,,則的長(zhǎng)是______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀下列材料,并完成相應(yīng)的任務(wù).

古希臘的幾何學(xué)家海倫在他的著作《度量論》一書(shū)中給出了利用三角形三邊之長(zhǎng)求面積的公式﹣﹣﹣﹣海倫公式S(其中a,bc是三角形的三邊長(zhǎng),,S為三角形的面積),并給出了證明

例如:在△ABC中,a3b4,c5,那么它的面積可以這樣計(jì)算:

a3,b4,c5

6

S6

事實(shí)上,對(duì)于已知三角形的三邊長(zhǎng)求三角形面積的問(wèn)題,還可用我國(guó)南宋時(shí)期數(shù)學(xué)家秦九韶提出的秦九韶公式等方法解決.

根據(jù)上述材料,解答下列問(wèn)題:

如圖,在△ABC中,BC7,AC8,AB9

1)用海倫公式求△ABC的面積;

2)如圖,AD、BE為△ABC的兩條角平分線,它們的交點(diǎn)為I,求△ABI的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,拋物線y=mx22mx3 (m≠0)y軸交于點(diǎn)A,其對(duì)稱軸與x軸交于點(diǎn)B,頂點(diǎn)為C點(diǎn).

1)求點(diǎn)A和點(diǎn)B的坐標(biāo);

2)若∠ACB45°,求此拋物線的表達(dá)式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某企業(yè)為響應(yīng)國(guó)家教育扶貧的號(hào)召,決定對(duì)某鄉(xiāng)鎮(zhèn)全體貧困初、高中學(xué)生進(jìn)行資助,初中學(xué)生每月資助200元,高中學(xué)生每月資助300元.已知該鄉(xiāng)受資助的初中學(xué)生人數(shù)是受資助的高中學(xué)生人數(shù)的2倍,且該企業(yè)在2018年下半年712月這6個(gè)月資助學(xué)生共支出10.5萬(wàn)元.

1)問(wèn)該鄉(xiāng)鎮(zhèn)分別有多少名初中學(xué)生和高中學(xué)生獲得了資助?

22018712月期間,受資助的初、高中學(xué)生中,分別有30%40%的學(xué)生被評(píng)為優(yōu)秀學(xué)生,從而獲得了該鄉(xiāng)鎮(zhèn)政府的公開(kāi)表?yè)P(yáng).同時(shí),提供資助的企業(yè)為了激發(fā)更多受資助學(xué)生的進(jìn)取心和學(xué)習(xí)熱情,決定對(duì)2019年上半年16月被評(píng)為優(yōu)秀學(xué)生的初中學(xué)生每人每月增加a%的資助,對(duì)被評(píng)為優(yōu)秀學(xué)生的高中學(xué)生每人每月增加2a%的資助.在此獎(jiǎng)勵(lì)政策的鼓勵(lì)下,201916月被評(píng)為優(yōu)秀學(xué)生的初、高中學(xué)生分別比2018712月的人數(shù)增加了3a%a%.這樣,2019年上半年評(píng)為優(yōu)秀學(xué)生的初、高中學(xué)生所獲得的資助總金額一個(gè)月就達(dá)到了10800元,求a的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB是O的直徑,點(diǎn)C為O上一點(diǎn),CN為O的切線,OMAB于點(diǎn)O,分別交AC、CN于D、M兩點(diǎn).

(1)求證:MD=MC;

(2)若O的半徑為5,AC=4,求MC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,輪船在A處觀測(cè)燈塔C位于北偏東70o方向上,輪船從A處以每小時(shí)30海里的速度沿南偏東50o方向勻速航行,1小時(shí)后到達(dá)碼頭B處,此時(shí)觀測(cè)燈塔C位于北偏東25o方向上,求燈塔C與碼頭B之間的距離(結(jié)果保留根號(hào)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某養(yǎng)殖場(chǎng)計(jì)劃用96米的竹籬笆圍成如圖所示的①、②、③三個(gè)養(yǎng)殖區(qū)域,其中區(qū)域①是正方形,區(qū)域②和③是矩形,且AGBG32.設(shè)BG的長(zhǎng)為2x米.

1)用含x的代數(shù)式表示DF ;

2x為何值時(shí),區(qū)域③的面積為180平方米;

3x為何值時(shí),區(qū)域③的面積最大?最大面積是多少?

查看答案和解析>>

同步練習(xí)冊(cè)答案