【題目】如圖,△ABC是等腰直角三角形,∠A=90°,點(diǎn)P、Q分別是AB、AC上的一動(dòng)點(diǎn),且滿足BP=AQ,D是BC的中點(diǎn).
(1)求證:△PDQ是等腰直角三角形;
(2)當(dāng)點(diǎn)P運(yùn)動(dòng)到什么位置時(shí),四邊形APDQ是正方形,并說明理由.

【答案】證明:(1)連接AD
∵△ABC是等腰直角三角形,D是BC的中點(diǎn)
∴AD⊥BC,AD=BD=DC,∠DAQ=∠B,
在△BPD和△AQD中,
,
∴△BPD≌△AQD(SAS),
∴PD=QD,∠ADQ=∠BDP,
∵∠BDP+∠ADP=90°
∴∠ADP+∠ADQ=90°,即∠PDQ=90°,
∴△PDQ為等腰直角三角形;
(2)解:當(dāng)P點(diǎn)運(yùn)動(dòng)到AB的中點(diǎn)時(shí),四邊形APDQ是正方形;理由如下:
∵∠BAC=90°,AB=AC,D為BC中點(diǎn),
∴AD⊥BC,AD=BD=DC,∠B=∠C=45°,
∴△ABD是等腰直角三角形,
當(dāng)P為AB的中點(diǎn)時(shí),DP⊥AB,即∠APD=90°,
又∵∠A=90°,∠PDQ=90°,
∴四邊形APDQ為矩形,
又∵DP=AP=AB,
∴矩形APDQ為正方形(鄰邊相等的矩形為正方形).

【解析】(1)連接AD,根據(jù)直角三角形的性質(zhì)可得AD=BD=DC,從而證明△BPD≌△AQD,得到PD=QD,∠ADQ=∠BDP,則△PDQ是等腰三角形;由∠BDP+∠ADP=90°,得出∠ADP+∠ADQ=90°,得到△PDQ是直角三角形,從而證出△PDQ是等腰直角三角形;
(2)若四邊形APDQ是正方形,則DP⊥AP,得到P點(diǎn)是AB的中點(diǎn).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列運(yùn)算,其中正確的是( 。

A. 2aa2B. a23a5

C. aa3a4D. a+b2a2+b2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)用代數(shù)式表示:“x的2倍與y的平方的差”

(2)當(dāng)x=3,y= -1時(shí),求(1)中代數(shù)式的值

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在菱形ABCD中,對(duì)角線AC與BD相交于點(diǎn)O,MN過點(diǎn)O且與邊AD、BC分別交于點(diǎn)M和點(diǎn)N.
(1)請你判斷OM與ON的數(shù)量關(guān)系,并說明理由;
(2)過點(diǎn)D作DE∥AC交BC的延長線于E,當(dāng)AB=5,AC=6時(shí),求△BDE的周長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某下崗職工購進(jìn)一批貨物,到集貿(mào)市場零售,已知賣出去的貨物數(shù)量x與售價(jià)y的關(guān)系如下表:

數(shù)量x(千克)

1

2

3

4

5

售價(jià)y(元)

3+0.1

6+0.2

9+0.3

12+0.4

15+0.5

寫出用x表示y的公式是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一元二次方程x2-x-2=0的解是( )

A. x1=1x2=2B. x1=1,x2=-2

C. x1=-1x2=-2.D. x1=-1,x2=2.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,已知點(diǎn)P(2,1)與點(diǎn)Q(2,﹣1),下列描述正確是(
A.關(guān)于x軸對(duì)稱
B.關(guān)于y軸對(duì)稱
C.關(guān)于原點(diǎn)對(duì)稱
D.都在y=2x的圖象上

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小亮家與姥姥家相距24km,小亮8:00從家出發(fā),騎自行車去姥姥家.媽媽8:30從家出發(fā),乘車沿相同路線去姥姥家.在同一直角坐標(biāo)系中,小亮和媽媽的行進(jìn)路程s(km)與北京時(shí)間t(時(shí))的函數(shù)圖象如圖所示.根據(jù)圖象得到下列結(jié)論,其中錯(cuò)誤的是(
A.小亮騎自行車的平均速度是10km/h
B.媽媽比小亮提前0.5小時(shí)到達(dá)姥姥家
C.媽媽在距家12km處追上小亮
D.9:00媽媽追上小亮

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計(jì)算(mx+8)(2-3x)的結(jié)果中不含x的一次項(xiàng),m的值應(yīng)為(   )

A. 3 B. -12 C. 12 D. 24

查看答案和解析>>

同步練習(xí)冊答案