【題目】如圖,正五邊形的邊長為2,連接對角線AD,BE,CE,線段AD分別與BE和CE相交于點M,N,給出下列結論:①∠AME=108°;②;③MN=;④.其中正確結論的序號是________.
【答案】①、②、③
【解析】分析:根據(jù)正五邊形的性質(zhì)得到∠ABE=∠AEB=∠EAD=36°,根據(jù)三角形的內(nèi)角和即可得到結論;由于∠AEN=108°-36°=72°,∠ANE=36°+36°=72°,得到∠AEN=∠ANE,根據(jù)等腰三角形的判定定理得到AE=AN,同理DE=DM,根據(jù)相似三角形的性質(zhì)得到和AM,AN,AD有關的比例式,等量代換得到AN2=AMAD;根據(jù)AE2=AMAD,列方程得到MN=3-;在正五邊形ABCDE中,由于BE=CE=AD=1+,得到BH=BC=1,根據(jù)勾股定理得到EH的值,根據(jù)三角形的面積得到結論.
詳解:∵∠BAE=∠AED=108°,
∵AB=AE=DE,
∴∠ABE=∠AEB=∠EAD=36°,
∴∠AME=180°-∠EAM-∠AEM=108°,故①正確;
∵∠AEN=108°-36°=72°,∠ANE=36°+36°=72°,
∴∠AEN=∠ANE,
∴AE=AN,
同理DE=DM,
∴AE=DM,
∵∠EAD=∠AEM=∠ADE=36°,
∴△AEM∽△ADE
∴,
∴AE2=AMAD;
∴AN2=AMAD;故②正確;
∵AE2=AMAD,
∴22=(2-MN)(4-MN),
解得:MN=3-;故③正確;
在正五邊形ABCDE中,過E作EH⊥BC于H
∵BE=CE=AD=1+,
∴BH=BC=1,
∴EH=,
∴S△EBC=BCEH=×2×=,故④錯誤;
故答案為:①②③.
科目:初中數(shù)學 來源: 題型:
【題目】問題1:設a、b是方程x2+x-2012=0的兩個實數(shù)根,則a2+2a+b的值為________;
問題2:方程x2-2x-1=0的兩個實數(shù)根分別為x1,x2,則(x1―1)(x2―1)=_______;
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】有一水箱,它的容積為500L,水箱內(nèi)原有水200L,現(xiàn)往水箱中注水,已知每分鐘注水10L.
(1)寫出水箱內(nèi)水量(L)與注水時間(min)的函數(shù)關系.
(2)求注水12min時水箱內(nèi)的水量?
(3)需多長時間把水箱注滿?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,一次函數(shù)y=kx+b(k≠0)的圖象與反比例函數(shù)y=(m≠0)的圖象交于A、B兩點,與x軸交于C點,點A的坐標為(n,12),點C的坐標為(-4,0),且tan∠ACO=2.
(1)求該反比例函數(shù)和一次函數(shù)的解析式;
(2)求點B的坐標;
(3)在x軸上求點E,使△ACE為直角三角形.(直接寫出點E的坐標)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】四邊形ABCD中,對角線AC、BD相交于點O,下列條件不能判定這個四邊形是平行四邊形的是
A.AB∥DC,AD∥BC B.AB=DC,AD=BC
C.AO=CO,BO=DO D.AB∥DC,AD=BC
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,O為坐標原點,△ABO的邊AB垂直與x軸,垂足為點B,反比例函數(shù)(x>0)的圖象經(jīng)過AO的中點C,且與AB相交于點D,OB=4,AD=3.
(1)求反比例函數(shù)的解析式;
(2)求cos∠OAB的值;
(3)求經(jīng)過C、D兩點的一次函數(shù)解析式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC中,AB=AC=2,∠B=30°,點D在BC上,過點D作DE⊥BC,交BA或其延長線于點E,過點E作EF⊥BA交AC或其延長線于點F,連接DF.若DF⊥AC,則BD=_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,∠AOB=60°,OA=OB,動點C從點O出發(fā),沿射線OB方向移動,以AC為邊在右側作等邊△ACD,連接BD,則BD所在直線與OA所在直線的位置關系是( 。
A. 平行 B. 相交 C. 垂直 D. 平行、相交或垂直
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com