【題目】如圖,在Rt△ABC中,∠ACB=90°,AC=BC=6cm,點P從點A出發(fā),沿AB方向以每秒cm的速度向終點B運動;同時,動點Q從點B出發(fā)沿BC方向以每秒1cm的速度向終點C運動,將△PQC沿BC翻折,點P的對應(yīng)點為點P′,設(shè)Q點運動的時間為t秒,若四邊形QPCP′為菱形,則t的值為_____

【答案】2

【解析】作PD⊥BC于D,PE⊥AC于E,如圖,AP=t,BQ=tcm,(0≤t<6)

∵∠C=90°,AC=BC=6cm,

∴△ABC為直角三角形,

∴∠A=∠B=45°,

∴△APE和△PBD為等腰直角三角形,

∴PE=AE=AP=tcm,BD=PD,

∴CE=AC﹣AE=(6﹣t)cm,

∵四邊形PECD為矩形,

∴PD=EC=(6﹣t)cm,

∴BD=(6﹣t)cm,

∴QD=BD﹣BQ=(6﹣2t)cm,

在Rt△PCE中,PC2=PE2+CE2=t2+(6﹣t)2,

在Rt△PDQ中,PQ2=PD2+DQ2=(6﹣t)2+(6﹣2t)2

∵四邊形QPCP′為菱形,

∴PQ=PC,

∴t2+(6﹣t)2=(6﹣t)2+(6﹣2t)2,

∴t1=2,t2=6(舍去),

∴t的值為2.

故答案為:2.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】寫出所有滿足下列條件的數(shù):

(1)大于-且小于的所有整數(shù);

(2)小于的所有正整數(shù);

(3)絕對值小于的所有整數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了對學(xué)生進行多元化的評價,某中學(xué)決定對學(xué)生進行綜合素質(zhì)評價設(shè)該校中學(xué)生綜合素質(zhì)評價成績?yōu)?/span>x分,滿分為100分評價等級與評價成績x分之間的關(guān)系如下表:

中學(xué)生綜合素質(zhì)評價成績

中學(xué)生綜合素質(zhì)評價等級

A

B

C

D

現(xiàn)隨機抽取該校部分學(xué)生的綜合素質(zhì)評價成績,整理繪制成圖、圖兩幅不完整的統(tǒng)計圖請根據(jù)相關(guān)信息,解答下列問題:

(1)在這次調(diào)查中,一共抽取了______名學(xué)生,圖中等級為D級的扇形的圓心角等于______;

(2)補全圖中的條形統(tǒng)計圖;

(3)若該校共有1200名學(xué)生,請你估計該校等級為C級的學(xué)生約有多少名.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知雙曲線y= 經(jīng)過點B(3 ,1),點A是雙曲線第三象限上的動點,過B作BC⊥y軸,垂足為C,連接AC.
(1)求k的值;
(2)若△ABC的面積為6 ,求直線AB的解析式;
(3)在(2)的條件下,寫出反比例函數(shù)值大于一次函數(shù)值時x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,動點S從點A出發(fā),沿線段AB運動至點B后,立即按原路返回,點S在運動過程中速度不變,則以點B為圓心,線段BS長為半徑的圓的面積m與點S的運動時間t之間的函數(shù)關(guān)系圖象大致為( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,四邊形ABCD是平行四邊形,AECF,且分別交對角線BD于點EF

(1)求證:AEB≌△CFD

(2)連接AF,CE,若∠AFE=CFE,求證:四邊形AFCE是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,,,,EBC的中點,PAB上的任意一點,連接PE,將PE繞點P逆時針旋轉(zhuǎn)得到PQ,過A點,D點分別作BC的垂線,垂足分別為M,N

AM的值;

連接AC,若PAB的中點,求PE的長;

若點Q落在ABAD邊所在直線上,請直接寫出BP的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知⊙O的直徑CD=10,AB是⊙O的弦,AB⊥CD,垂足為M,且AB=8,則AC的長為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知二次函數(shù)y=ax2+ x+c的圖象與y軸交于點A(0,4),與x軸交于點B,C,點C的坐標為(8,0),連接AC.

(1)請直接寫出二次函數(shù)y=ax2+ x+c的表達式;
(2)判斷△ABC的形狀,并說明理由;
(3)若點N在線段BC上運動(不與點B、C重合),過點N作NM∥AC,交AB于點M,當△AMN面積最大時,求此時N的坐標.

查看答案和解析>>

同步練習(xí)冊答案