【題目】如圖,根據(jù)要求回答下列問題:

(1)點A關(guān)于y軸對稱點A′的坐標(biāo)是  ;點B關(guān)于y軸對稱點B′的坐標(biāo)是  

(2)作出ABC關(guān)于y軸對稱的圖形A′B′C′(不要求寫作法)

(3)求ABC的面積.

【答案】1)(32),(4,3);(2圖形見解析3

【解析】試題分析

(1)對照圖形可知點A、B的坐標(biāo)分別:(-3,2)、(-4,-3),由此寫出點A、B的坐標(biāo)即可;

2)分別作出點A、B、C關(guān)于y軸的對稱點A′、B′、C′,再順次連接這三點即可得到所求三角形;

3)如圖,由SABC=S矩形DBEF-SADB-SBEC-S△AFC,計算出△ABC的面積即可.

試題解析

1由圖可知A、B的坐標(biāo)分別:(-3,2)、(-4,-3),

A、B關(guān)于y軸的對稱點A′B′的坐標(biāo)分別為:3,2),(4,﹣3);

2如下圖所示;△A′B′C′為所求的圖形;

(3)如圖

SABC=S矩形DBEF-SADB-SBEC-S△AFC

=

=

=

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在分別標(biāo)有號碼2,3,4…109個球中,隨機取出2個球,記下它們的號碼,則較大號能被較小號整除的概率是( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明調(diào)查了班級里20位同學(xué)本學(xué)期購買課外書的花費情況,并將結(jié)果繪制成了如圖的統(tǒng)計圖.在這20位同學(xué)中,本學(xué)期購買課外書的花費的眾數(shù)和中位數(shù)分別是(  )

A. 50,50 B. 50,30 C. 80,50 D. 30,50

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,弦CDABH,點G是⊙O上一點,AGCD于點K,延長KD至點E,使KE=GE,分別延長EG、AB相交于點F.

(1)求證:EF是⊙O的切線;

(2)若ACEF,試探究KG、KD、GE之間的關(guān)系,并說明理由;

(3)在(2)的條件下,若sinE=,AK=2,求FG的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】關(guān)于x的方程rx2+(r+2)x+r﹣1=0有根只有整數(shù)根的一切有理數(shù)r的值有( 。﹤.

A. 1 B. 2 C. 3 D. 不能確定

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,等腰直角三角形ABC中,點D在斜邊BC上,以AD為直角邊作等腰直角三角形ADE

(1)求證:ABD≌△ACE

(2)求證:BD2CD22AD2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】設(shè)a,b是任意兩個不等實數(shù),我們規(guī)定:滿足不等式a≤x≤b的實數(shù)x的所有取值的全體叫做閉區(qū)間,表示為[a,b].對于一個函數(shù),如果它的自變量x與函數(shù)值y滿足:當(dāng)m≤x≤n時,有m≤y≤n,我們就稱此函數(shù)是閉區(qū)間[m,n]上的“閉函數(shù)”.如函數(shù)y=﹣x+4,當(dāng)x=1時,y=3;當(dāng)x=3時,y=1,即當(dāng)1≤x≤3時,恒有1≤y≤3,所以說函數(shù)y=﹣x+4是閉區(qū)間[1,3]上的“閉函數(shù)”,同理函數(shù)y=x也是閉區(qū)間[1,3]上的“閉函數(shù)”.

(1)反比例函數(shù)y=是閉區(qū)間[1,2018]上的“閉函數(shù)”嗎?請判斷并說明理由;

(2)如果已知二次函數(shù)y=x2﹣4x+k是閉區(qū)間[2,t]上的“閉函數(shù)”,求k和t的值;

3)如果(2)所述的二次函數(shù)的圖象交y軸于C點,A為此二次函數(shù)圖象的頂點,B為直線x=1上的一點,當(dāng)ABC為直角三角形時,寫出點B的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校組織一項公益知識競賽,比賽規(guī)定:每個班級由2名男生、2名女生及1名班主任老師組成代表隊.但參賽時,每班只能有3名隊員上場參賽,班主任老師必須參加,另外2名隊員分別在2名男生和2名女生中各隨機抽出1名.初三(1)班由甲、乙2名男生和丙、丁2名女生及1名班主任組成了代表隊,求恰好抽到由男生甲、女生丙和這位班主任一起上場參賽的概率.(請用畫樹狀圖列表列舉等方法給出分析過程)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明在學(xué)習(xí)二次根式后,發(fā)現(xiàn)一些含根號的式子可以寫成另一個式子的平方,如:3+2=(1+2,善于思考的小明進行了以下探索:
設(shè)a+b=(m+n2(其中a、b、m、n均為整數(shù)),則有a+b=m2+2n2+2mn,∴a=m2+2n2,b=2mn,這樣小明就找到了一種把部分a+b的式子化為平方式的方法。
請我仿照小明的方法探索并解決下列問題:
(1)當(dāng)a、b、m、n均為正整數(shù)時,若a+b=(m+n2,用含m、n的式子分別表示a、b,得a=________, b=___________.

(2)若a+4=(m+n2,且a、m、n均為正整數(shù),求a的值。

查看答案和解析>>

同步練習(xí)冊答案