【題目】如圖,吊車在水平地面上吊起貨物時(shí),吊繩BC與地面保持垂直,吊臂AB與水平線的夾角為64°,吊臂底部A距地面1.5m.
(1)當(dāng)?shù)醣鄣撞?/span>A與貨物的水平距離AC為5m時(shí),求吊臂AB的長(zhǎng);
(2)如果該吊車吊臂的最大長(zhǎng)度AD為20m,那么從地面上吊起貨物的最大高度是多少?(吊鉤的長(zhǎng)度與貨物的高度忽略不計(jì),計(jì)算結(jié)果精確到0.1m,參考數(shù)據(jù):sin64°≈0.90,cos64°≈0.44,tan64°≈2.05)
【答案】(1)AB=11.4m;(2)最大高度是19.5m.
【解析】
(1)根據(jù)直角三角形的性質(zhì)和三角函數(shù)解答即可;
(2)過點(diǎn)D作DH⊥地面于H,利用直角三角形的性質(zhì)和三角函數(shù)解答即可.
解:(1)在Rt△ABC中,
∵∠BAC=64°,AC=5m,
∴AB=≈5÷0.44≈11.4(m);
故答案為:11.4;
(2)過點(diǎn)D作DH⊥地面于H,交水平線于點(diǎn)E,
在Rt△ADE中,
∵AD=20m,∠DAE=64°,EH=1.5m,
∴DE=sin64°×AD≈20×0.9≈18(m),
即DH=DE+EH=18+1.5=19.5(m),
答:如果該吊車吊臂的最大長(zhǎng)度AD為20m,那么從地面上吊起貨物的最大高度是19.5m.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,直線PQ的同側(cè)有兩點(diǎn)M,N,點(diǎn)T在直線PQ上,若∠MTP=∠NTQ,則稱點(diǎn)M,N為關(guān)于直線PQ的衍射點(diǎn).如圖2,BD是矩形ABCD的對(duì)角線,E是邊BC延長(zhǎng)線上的一點(diǎn),且CE=BC,連接AE交CD于點(diǎn)F,交BD于點(diǎn)P,連接BF,CP.
(1)求證:點(diǎn)A,B是關(guān)于直線CD的衍射點(diǎn).
(2)若點(diǎn)C,F是關(guān)于直線BD的衍射點(diǎn),CP=2PF=2,求AB的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(6分)如圖,△ABC三個(gè)頂點(diǎn)的坐標(biāo)分別為A(2,4),B(1,1),C(4,3).
(1)請(qǐng)畫出△ABC關(guān)于x軸對(duì)稱的△A1B1C1,并寫出點(diǎn)A1的坐標(biāo);
(2)請(qǐng)畫出△ABC繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)90°后的△A2BC2;
(3)求出(2)中C點(diǎn)旋轉(zhuǎn)到C2點(diǎn)所經(jīng)過的路徑長(zhǎng)(記過保留根號(hào)和π).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知點(diǎn)B(0,4),等邊三角形OAB的頂點(diǎn)A在反比例函數(shù)y=(x>0)的圖象上.
(1)求反比例函數(shù)的表達(dá)式;
(2)把△OAB沿y軸向上平移a個(gè)單位長(zhǎng)度,對(duì)應(yīng)得到△O'A'B'.當(dāng)這個(gè)函數(shù)的圖象經(jīng)過△O'A'B'一邊的中點(diǎn)時(shí),求a的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】從下列4個(gè)命題中任取一個(gè):①三點(diǎn)確定一個(gè)圓:②平分弦的直徑平分弦所對(duì)的弧:③弦相等,所對(duì)的圓心角相等;④在半徑為4的圓中,30°的圓心角所對(duì)的弧長(zhǎng)為,是真命題的概率是( ).
A.1B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:拋物線.
(1)求證:拋物線與軸有兩個(gè)交點(diǎn).
(2)設(shè)拋物線與軸的兩個(gè)交點(diǎn)的橫坐標(biāo)分別為,(其中).若是關(guān)于的函數(shù)、且,求這個(gè)函數(shù)的表達(dá)式;
(3)若,將拋物線向上平移一個(gè)單位后與軸交于點(diǎn)、.平移后如圖所示,過作直線,分別交的正半軸于點(diǎn)和拋物線于點(diǎn),且.是線段上一動(dòng)點(diǎn),求的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,直線y=x+2與雙曲線y=相交于點(diǎn)A(2,n),與x軸交于點(diǎn)C.
(1)求雙曲線解析式;
(2)點(diǎn)P在x軸上,如果△ACP的面積為5,求點(diǎn)P的坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com