如圖,二次函數(shù)y=ax2+bx-8(a≠0)的圖象與x軸交于點A(-2,0),B(4,0)兩點,與y軸交于點C,T為拋物線的頂點.
(1)在x軸下方的拋物線上有一點D,以A,C,D,B四點為頂點的四邊形ACDB是等腰梯形,請直接寫出D點的坐標;
(2)過點B作兩條互相垂直的直線l1,l2,在拋物線的對稱軸上是否存在點P,使得以點P為圓心的圓過原點,且與直線l1,l2都相切?如果存在,求出點P的坐標;如果不存在,請說明理由;
(3)直線CT交x軸于點E,點F(m,n)是射線ET上的一個動點,將拋物線沿其對稱軸向下平移2個單位長度,若平移后的拋物線與線段EF只有一個公共點,試分別計算實數(shù)m,n的取值范圍.
分析:(1)把點A、B的坐標代入二次函數(shù)解析式,利用待定系數(shù)法求出其解析式,然后在求出點C的坐標,根據(jù)等腰梯形的性質(zhì),點D與點C的縱坐標相等,列方程求解即可得到點D的坐標;
(2)根據(jù)二次函數(shù)解析式求出對稱軸解析式,然后設(shè)出點P的坐標是(1,y),可以判定以兩垂足與點P、B為頂點的四邊形是正方形,利用點P的坐標表示出圓的半徑OP以及正方形的對角線PB的長度,再根據(jù)正方形的對角線與邊的關(guān)系進行求解即可;
(3)根據(jù)(1)中二次函數(shù)解析式求出點C、T的坐標,利用待定系數(shù)法求出直線CT的解析式,再根據(jù)平移寫出平移后的二次函數(shù)解析式,然后兩解析式聯(lián)立求出交點的坐標,點F位于兩交點之間(包含左邊交點,不包含右邊交點)即可滿足平移后的拋物線與線段EF只有一個公共點,然后根據(jù)交點的坐標寫出m、n的取值范圍即可.
解答:解:(1)根據(jù)題意得,
4a-2b-8=0
16a+4b-8=0
,
解得
a=1
b=-2
,
∴二次函數(shù)解析式為y=x2-2x-8,
當x=0時,y=-8,
∴點C的坐標是(0,-8),
∵四邊形ACDB是等腰梯形,
∴當y=-8時,x2-2x-8=-8,
解得x1=0,x2=2,
∴點D的坐標是(2,-8);

(2)存在.
理由如下:如圖,根據(jù)(1),
∵y=x2-2x-8,
∴二次函數(shù)圖象對稱軸為x=-
b
2a
=-
-2
2×1
=1,
∵直線l1,l2互相垂直,⊙P與直線l1,l2都相切,
∴過兩垂足與點PB的四邊形是正方形,
設(shè)點P的坐標是(1,y),
則OP=
12+y2
=
1 +y2
,
PB=
(4-1)2+(0-y)2
=
9 +y2

9 +y2
=
2
1 +y2
,即9+y2=2(1+y2),
可得y2=7,
解得y=±
7

∴存在點P(1,
7
)或(1,-
7
);

(3)∵y=x2-2x-8y=(x-1)2-9,T為拋物線的頂點,
∴點T的坐標是(1,-9),
設(shè)直線CT的解析式是y=kx+b1,
b1=-8
k+b1=-9
,
解得
k=-1
b1=-8
,
∴直線CT的解析式是y=-x-8,
拋物線向下平移兩個單位的解析式是y=x2-2x-8-2,
即y=x2-2x-10,
兩解析式聯(lián)立得,
y=-x-8
y=x2-2x-10
,
解得
x1=-1
y1=-7
,
x2=2
y2=-10

∴兩交點的坐標是(-1,-7),(2,-10),
欲使平移后的拋物線與線段EF只有一個公共點,則點F位于兩交點之間,且包含左邊交點,不包含右邊交點,
∴-1≤m<2,-10<n≤-7.
點評:本題綜合考查了二次函數(shù)的性質(zhì),待定系數(shù)法求函數(shù)解析式,正方形的判定與性質(zhì),點的坐標,二次函數(shù)圖象與幾何變換,以及等腰梯形的性質(zhì),綜合性較強,先求出拋物線的解析式是解題的關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,二次函數(shù)的圖象經(jīng)過點D(0,
7
9
3
),且頂點C的橫坐標為4,該圖象在x軸上截得的線段AB的長為6.
(1)求二次函數(shù)的解析式;
(2)在該拋物線的對稱軸上找一點P,使PA+PD最小,求出點P的坐標;
(3)在拋物線上是否存在點Q,使△QAB與△ABC相似?如果存在,求出點Q的坐標;如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,二次函數(shù)圖象的頂點為坐標原點O,且經(jīng)過點A(3,3),一次函數(shù)的圖象經(jīng)過點A和點B(6,0).
(1)求二次函數(shù)與一次函數(shù)的解析式;
(2)如果一次函數(shù)圖象與y相交于點C,點D在線段AC上,與y軸平行的直線DE與二次函數(shù)圖象相交于點E,∠CDO=∠OED,求點D的坐標.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,二次函數(shù)y=ax2+bx+c的圖象與x軸交于B、C兩點,與y軸交于點A(0,-3),∠ABC=45°,∠ACB=60°,求這個二次函數(shù)解析式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

某公司推出了一種高效環(huán)保型洗滌用品,年初上市后,公司經(jīng)歷了從虧損到盈利的過程,如圖的二次函數(shù)圖象(部分)刻畫了該公司年初以來累積利潤s(萬元)與時間t(月)之間的關(guān)系(即前t個月的利潤總和s與t之間的關(guān)系).根據(jù)圖象提供的信息,解答下列問題:
(1)求累積利潤s(萬元)與時間t(月)之間的函數(shù)關(guān)系式;
(2)求截止到幾月末公司累積利潤可達30萬元;
(3)從第幾個月起公司開始盈利?該月公司所獲利潤是多少萬元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,二次函數(shù)y=ax2+bx+c的圖象與x軸相交于兩個點,根據(jù)圖象回答:(1)b
0(填“>”、“<”、“=”);
(2)當x滿足
x<-4或x>2
x<-4或x>2
時,ax2+bx+c>0;
(3)當x滿足
x<-1
x<-1
時,ax2+bx+c的值隨x增大而減。

查看答案和解析>>

同步練習冊答案