【題目】如圖,在ABCD中,AE⊥BC,垂足為E,如果AB=5,AE=4,BC=8,有下列結(jié)論:
①DE=4;
②S△AED=S四邊形ABCD;
③DE平分∠ADC;
④∠AED=∠ADC.
其中正確結(jié)論的序號(hào)是_____(把所有正確結(jié)論的序號(hào)都填在橫線上)
【答案】①②③
【解析】
利用平行四邊形的性質(zhì)結(jié)合勾股定理以及三角形面積求法分別分析得出答案.
解:①∵在ABCD中,AE⊥BC,垂足為E,AE=4,BC=8,
∴AD=8,∠EAD=90°,
∴DE==,故此選項(xiàng)正確;
②∵S△AED=AEAD
S四邊形ABCD=AE×AD,
∴S△AED=S四邊形ABCD,故此選項(xiàng)正確;
③∵AD∥BC,
∴∠ADE=∠DEC,
∵AB=5,AE=4,∠AEB=90°,
∴BE=3,
∵BC=8,
∴EC=CD=5,
∴∠CED=∠CDE,
∴∠ADE=∠CDE,
∴DE平分∠ADC,故此選項(xiàng)正確;
④當(dāng)∠AED=∠ADC時(shí),由③可得∠AED=∠EDC,
故AE∥DC,與已知AB∥DC矛盾,故此選項(xiàng)錯(cuò)誤.
故答案為:①②③.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知,兩點(diǎn),且、滿足,點(diǎn)是射線上的動(dòng)點(diǎn)(不與,重合),將線段平移到,使點(diǎn)與點(diǎn)對(duì)應(yīng),點(diǎn)與點(diǎn)對(duì)應(yīng),連接,.
(1)求出點(diǎn)和點(diǎn)的坐標(biāo);
(2)設(shè)三角形面積為,若,求的取值范圍;
(3)設(shè),,,請(qǐng)給出,,滿足的數(shù)量關(guān)系式,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=BC=8,AO=BO,點(diǎn)M是射線CO上的一個(gè)動(dòng)點(diǎn),∠AOC=60°,則當(dāng)△ABM為直角三角形時(shí),AM的長(zhǎng)為____________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】釣魚島是我國(guó)的神圣領(lǐng)土,中國(guó)人民維護(hù)國(guó)家領(lǐng)土完整的決心是堅(jiān)定的,多年來,我國(guó)的海監(jiān)、漁政等執(zhí)法船定期開赴釣魚島巡視.某日,我海監(jiān)船(A處)測(cè)得釣魚島(B處)距離為20海里,海監(jiān)船繼續(xù)向東航行,在C處測(cè)得釣魚島在北偏東45°的方向上,距離為10海里,求AC的距離.(結(jié)果保留根號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知A(﹣4,n),B(1,﹣4)是一次函數(shù)y=kx+b的圖象和反比例函數(shù)y=的圖象的兩個(gè)交點(diǎn).、(1)求△AOB的面積;(2)求不等式kx+b﹣<0的解集(請(qǐng)直接寫出答案).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線l1的解析表達(dá)式為y=-3x+3,且l1與x軸交于點(diǎn)D,直線l2經(jīng)過點(diǎn)A,B,直線l1,l2,交于點(diǎn)C.
(1)求點(diǎn)D的坐標(biāo);
(2)求直線l2的解析表達(dá)式;
(3)求△ADC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】【問題原型】如圖1,在四邊形ABCD中,∠ADC=90°,AB=AC.點(diǎn)E、F分別為AC、BC的中點(diǎn),連結(jié)EF,DE.試說明:DE=EF.
【探究】如圖2,在問題原型的條件下,當(dāng)AC平分∠BAD,∠DEF=90°時(shí),求∠BAD的大小.
【應(yīng)用】如圖3,在問題原型的條件下,當(dāng)AB=2,且四邊形CDEF是菱形時(shí),直接寫出四邊形ABCD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】觀察下列各式:
13=×12×22
13+23=9=×22×32
13+23+33=36=×32×42
13+23+33+43=100=×42×52
回答下面的問題:
(1)猜想:13+23+33+…+(n-1)3+ n3=________.
(2)利用你得到的(1)中的結(jié)論,計(jì)算13+23+33+…+993+1003的值.
(3)計(jì)算:213+223+…+993+1003的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,ABCD為正方形,將正方形的邊CB繞點(diǎn)C順時(shí)針旋轉(zhuǎn)到CE,記∠BCE=α,連接BE,DE,過點(diǎn)C作CF⊥DE于F,交直線BE于H.
(1)當(dāng)α=60°時(shí),如圖1,則∠BHC= ;
(2)當(dāng)45°<α<90°,如圖2,線段BH、EH、CH之間存在一種特定的數(shù)量關(guān)系,請(qǐng)你通過探究,寫出這個(gè)關(guān)系式: (不需證明);
(3)當(dāng)90°<α<180°,其它條件不變(如圖3),(2)中的關(guān)系式是否還成立?若成立,說明理由;若不成立,寫出你認(rèn)為成立的結(jié)論,并簡(jiǎn)要證明.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com