【題目】如圖,在正方形ABCD中,對角線AC、BD相交于點O,E、F分別在OD、OC上,且DE=CF,連接DF、AE,AE的延長線交DF于點M.
(1)求證:AE=DF;
(2)求證:AM⊥DF.
【答案】(1)證明見解析;(2)證明見解析
【解析】
(1)根據(jù)正方形的性質(zhì)證明△AOE≌△DOF即可;
(2)由(1)知∠OEA=∠OFD,根據(jù)∠OAE+∠AEO=90°,等量代換即可得證.
證明:(1)∵四邊形ABCD是正方形,
∴OA=CO=OD,AC⊥BD,
∴∠AOE=∠DOF=90°,
又∵DE=CF,
∴OD﹣DE=OC﹣CF,即OE=OF,
在△AOE和△DOF中,,
∴△AOE≌△DOF(SAS),
∴AE=DF;
(2)由(1)得:△AOE≌△DOF,
∴∠OEA=∠OFD,
∵∠OAE+∠AEO=90°,
∴∠OAE+∠OFD=90°,
∴∠AMF=90°,
∴AM⊥DF.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點是軸非負半軸上的動點,點坐標為,是線段的中點,將點繞點順時針方向旋轉90°得到點,過點作軸的垂線,垂足為,過點作軸的垂線與直線相交于點,連接,,設點的橫坐標為.
(1)當時,求點的坐標;
(2)設的面積為,當點在線段上時,求與之間的函數(shù)關系式,并寫出自變量的取值范圍;
(3)當為何值時,取得最小值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一次函數(shù)y=x+4的圖象與反比例函數(shù)y=(k為常數(shù)且k≠0)的圖象交于A(﹣1,a),B兩點,與x軸交于點C.
(1)求a,k的值及點B的坐標;
(2)若點P在x軸上,且S△ACP=S△BOC,直接寫出點P的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,廣安市防洪指揮部發(fā)現(xiàn)渠江邊一處長400米,高8米,背水坡的坡角為45°的防洪大堤(橫截面為梯形ABCD)急需加固.經(jīng)調(diào)查論證,防洪指揮部專家組制定的加固方案是:背水坡面用土石進行加固,并使上底加寬2米,加固后,背水坡EF的坡比i=1:2.
(1)求加固后壩底增加的寬度AF的長;
(2)求完成這項工程需要土石多少立方米?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角標系中,已知△ABC三個頂點的坐標分別為A(﹣1,2),B(﹣3,4),C(﹣1,6).
(1)畫出△ABC,并求出BC所在直線的解析式;
(2)畫出△ABC繞點A順時針旋轉90°后得到的△AB1C1,并求出△ABC在上述旋轉過程中掃過的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某市將舉辦“時代新人說”第三季,幸福園小區(qū)居委會為了解居民獲取“時代新人說”活動相關信息的方式進行了隨機抽樣調(diào)查,調(diào)查設置了A(網(wǎng)絡),B(電視),C(報紙),D(其他)四種方式,被調(diào)查的居民只能從中選取一種方式,并根據(jù)收集到的數(shù)據(jù)繪制了如下的兩幅均不完整的統(tǒng)計圖:
根據(jù)圖中信息,解答下列問題.
補全上面的條形統(tǒng)計圖.
在扇形統(tǒng)計圖中,選擇種方式的人數(shù)所占的百分比是 ,選擇種方式的人數(shù)所在扇形圓心角的度數(shù)是 .
該小區(qū)有男女報名了社區(qū)的“時代新人說”活動,由于人數(shù)限制,居委會只能從中隨機抽取名參加活動,請你用畫樹狀圖或列表的方法求出恰好抽到男女的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,∠AOB=90°,∠B=30°,以點O為圓心,OA為半徑作弧交AB于點A、點C,交OB于點D,若OA=3,則陰影都分的面積為___________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在正方形ABCD中,AB=10cm,E為對角線BD上一動點,連接AE,CE,過E點作EF⊥AE,交直線BC于點F.E點從B點出發(fā),沿著BD方向以每秒2cm的速度運動,當點E與點D重合時,運動停止.設△BEF的面積為ycm2,E點的運動時間為x秒.
(1)求證:CE=EF;
(2)求y與x之間關系的函數(shù)表達式,并寫出自變量x的取值范圍;
(3)求△BEF面積的最大值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】甲乙兩人同時登山,甲乙兩人距地面的高度y(米)與登山時間x(分)之間的函數(shù)圖象如圖所示,根據(jù)圖象所提供的信息解答下列問題:
(1)甲登山的速度是 米/分鐘,乙在A地提速時距地面的高度b為 米.
(2)若乙提速后,乙的速度是甲登山速度的3倍,請求出乙提速后y和x之間的函數(shù)關系式.
(3)登山多長時間時,乙追上了甲,此時乙距A地的高度為多少米?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com