【題目】如圖,在直角坐標(biāo)系中,以點(diǎn)為圓心,以3為半徑的圓,分別交軸正半軸于點(diǎn),交軸正半軸于點(diǎn),過點(diǎn)的直線交軸負(fù)半軸于點(diǎn)

1)求兩點(diǎn)的坐標(biāo);

2)求證:直線的切線.

【答案】(1),;(2)詳見解析.

【解析】

1)先根據(jù)圓的半徑可求出CA的長(zhǎng),再結(jié)合點(diǎn)C坐標(biāo)即可得出點(diǎn)A坐標(biāo);根據(jù)點(diǎn)C坐標(biāo)可知OC的長(zhǎng),又根據(jù)圓的半徑可求出CB的長(zhǎng),然后利用勾股定理可求出OB的長(zhǎng),即可得出點(diǎn)B坐標(biāo);

2)先根據(jù)點(diǎn)坐標(biāo)分別求出,再根據(jù)勾股定理的逆定理可得是直角三角形,然后根據(jù)圓的切線的判定定理即可得證.

1)∵,圓的半徑為3

,

點(diǎn)Ax軸正半軸與圓的交點(diǎn)

如圖,連接CB,則

中,

點(diǎn)By軸正半軸與圓的交點(diǎn)

;

2)∵

中,

則在中,

是直角三角形,即

又∵BC是⊙C半徑

∴直線BD是⊙C的切線.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知ABCD.

1)作∠B的平分線交ADE點(diǎn)。(用尺規(guī)作圖法,保留作圖痕跡,不要求寫作法);

2)若ABCD的周長(zhǎng)為10CD=2,求DE的長(zhǎng)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某賓館有客房間供游客居住,當(dāng)每間客房的定價(jià)為每天元時(shí),客房恰好全部住滿;如果每間客房每天的定價(jià)每增加元,就會(huì)減少間客房出租.設(shè)每間客房每天的定價(jià)增加元,賓館出租的客房為間.求:

關(guān)于的函數(shù)關(guān)系式;

如果某天賓館客房收入元,那么這天每間客房的價(jià)格是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,學(xué)校教學(xué)樓對(duì)面是一幢實(shí)驗(yàn)樓,小朱在教學(xué)樓的窗口C測(cè)得實(shí)驗(yàn)樓頂部D的仰角為20°,實(shí)驗(yàn)樓底部B的俯角為30°,量得教學(xué)樓與實(shí)驗(yàn)樓之間的距離AB30m.求實(shí)驗(yàn)樓的高BD.(結(jié)果精確到1m.參考數(shù)據(jù)tan20°≈0.36,sin20°≈0.34cos20°≈0.94,

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀材料:各類方程的解法

求解一元一次方程,根據(jù)等式的基本性質(zhì),把方程轉(zhuǎn)化為的形式:求解二元一次方程組,把它轉(zhuǎn)化為一元一次方程來解;類似的,求解三元一次方程組,把它轉(zhuǎn)化為二元一次方程組來解;求解一元二次方程,把它轉(zhuǎn)化為兩個(gè)一元一次方程來解:求解分式方程,把它轉(zhuǎn)化為整式方程來解,由于“去分母”可能產(chǎn)生增根,所以解分式方程必須檢驗(yàn).各類方程的解法不盡相同,但是它們有一個(gè)共同的基本數(shù)學(xué)思想一一轉(zhuǎn)化,把未知轉(zhuǎn)化為已知.用“轉(zhuǎn)化”的數(shù)學(xué)思想,我們還可以解一些新的方程.例如,一元三次方程,可以通過因式分解把它轉(zhuǎn)化為,解方程,可得方程的解.利用上述材料給你的啟示,解下列方程;

1;

2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABCD中,AEBC,AFCD,垂足分別為點(diǎn)EF,且BEDF

1)如圖1,求證:ABCD是菱形;

2)如圖2,連接BD,交AE于點(diǎn)G,交AF于點(diǎn)H,連接EF、FG,若∠CEF30°,在不添加任何字母及輔助線的情況下,請(qǐng)直接寫出圖中面積是BEG面積2倍的所有三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某魚塘中養(yǎng)了某種魚5000條,為了估計(jì)該魚塘中該種魚的總質(zhì)量,從魚塘中捕撈了3次,取得的數(shù)據(jù)如下:

數(shù)量/

平均每條魚的質(zhì)量/kg

1次捕撈

20

1.6

2次捕撈

15

2.0

3次捕撈

15

1.8

1)求樣本中平均每條魚的質(zhì)量;

2)估計(jì)魚塘中該種魚的總質(zhì)量;

3)設(shè)該種魚每千克的售價(jià)為14元,求出售該種魚的收入y(元)與出售該種魚的質(zhì)量xkg)之間的函數(shù)關(guān)系,并估計(jì)自變量x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)k是常數(shù))

(1)求此函數(shù)的頂點(diǎn)坐標(biāo).

(2)當(dāng)時(shí),的增大而減小,求的取值范圍.

(3)當(dāng)時(shí),該函數(shù)有最大值,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,BD是⊙O的弦,延長(zhǎng)BD到點(diǎn)C,使DCBD,連接AC,EAC上一點(diǎn),直線EDAB延長(zhǎng)線交于點(diǎn)F,若∠CDE=∠DAC,AC12

1)求⊙O半徑;

2)求證:DE為⊙O的切線;

查看答案和解析>>

同步練習(xí)冊(cè)答案