【題目】如圖,直線是線段的垂直平分線,交線段于點,在下方的直線上取一點,連接,以線段為邊,在上方作正方形,射線交直線于點,連接.
(1)設,求的度數;
(2)寫出線段、之間的等量關系,并證明.
【答案】(1)45° ;(2),證明見解析.
【解析】
(1)由線段的垂直平分線的性質可得PM=PN,且PO⊥MN,由等腰三角形的性質可得∠PMN=∠PNM=α,由正方形的性質可得AP=PN,∠APN=90°,可得∠APO=α,由三角形的外角性質可求∠AMN的度數;
(2)由等腰直角三角形的性質和正方形的性質可得MN=CN,AN=BN,∠MNC=∠ANB=45°,可證△CBN∽△MAN,可得AM=BC.
(1)如圖,連接MP,
∵直線l是線段MN的垂直平分線,
∴PM=PN,且PO⊥MN
∴∠PMN=∠PNM=α
∴∠MPO=∠NPO=90°-α,
∵四邊形ABNP是正方形
∴AP=PN,∠APN=90°
∴AP=MP,∠APO=90°-(90°-α)=α
∴∠APM=∠MPO-∠APO=(90°-α)-α=90°-2α,
∵AP=PM
∴∠PMA=∠PAM= =45°+α,
∴∠AMN=∠AMP-∠PMN=45°+α-α=45°
(2)AM=BC
理由如下:
如圖,連接AN,CN,
∵直線l是線段MN的垂直平分線,
∴CM=CN,
∴∠CMN=∠CNM=45°,
∴∠MCN=90°
∴MN=CN,
∵四邊形APNB是正方形
∴∠ANB=∠BAN=45°
∴AN=BN,∠MNC=∠ANB=45°
∴∠ANM=∠BNC
又∵
∴△CBN∽△MAN
∴
∴AM=BC
科目:初中數學 來源: 題型:
【題目】(如圖 1,若拋物線 l1 的頂點 A 在拋物線 l2 上,拋物線 l2 的頂點 B 也在拋物線 l1 上(點 A 與點 B 不重合).我們稱拋物線 l1,l2 互為“友好”拋物線,一條拋物線的“友 好”拋物線可以有多條.
(1)如圖2,拋物線 l3: 與y 軸交于點C,點D與點C關于拋物線的對稱軸對稱,則點 D 的坐標為 ;
(2)求以點 D 為頂點的 l3 的“友好”拋物線 l4 的表達式,并指出 l3 與 l4 中y 同時隨x增大而增大的自變量的取值范圍;
(3)若拋物線 y=a1(x-m)2+n 的任意一條“友好”拋物線的表達式為 y=a2(x-h)2+k, 寫出 a1 與a2的關系式,并說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,正六邊形的對稱中心在反比例函數(,)的圖象上,邊在軸上,點在軸上,已知.
(1)點是否在該反比例函數的圖象上?請說明理由;
(2)若該反比例函數圖象與交于點,求點的橫坐標;
(3)平移正六邊形,使其一邊的兩個端點恰好都落在該反比例函數的圖象上,試描述平移過程.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】求證:相似三角形對應角的角平分線之比等于相似比.
要求:①分別在給出的相似三角形△ABC與△DEF中用尺規(guī)作出一組對應角的平分線,不寫作法,保留作圖痕跡;
②在完成作圖的基礎上,寫出已知、求證,并加以證明.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】丁老師為了解所任教的兩個班的學生數學學習情況,對數學進行了一次測試,獲得了兩個班的成績(百分制),并對數據(成績)進行整理、描述和分析,下面給出了部分信息.
①A、B兩班學生(兩個班的人數相同)數學成績不完整的頻數分布直方圖如下(數據分成5組:x<60,60≤x<70,70≤x<80,80≤x<90,90≤x≤100):
②A、B兩班學生測試成績在80≤x<90這一組的數據如下:
A班:80 80 82 83 85 85 86 87 87 87 88 89 89
B班:80 80 81 81 82 82 83 84 84 85 85 86 86 86 87 87 87 87 87 88 88 89
③A、B兩班學生測試成績的平均數、中位數、方差如下:
平均數 | 中位數 | 方差 | |
A班 | 80.6 | m | 96.9 |
B班 | 80.8 | n | 153.3 |
根據以上信息,回答下列問題:
(1)補全數學成績頻數分布直方圖;
(2)寫出表中m、n的值;
(3)請你對比分析A、B兩班學生的數學學習情況(至少從兩個不同的角度分析).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,在矩形ABCD中,動點E從A出發(fā),沿A→B→C方向運動,當點E到達點C時停止運動,過點E作EF⊥AE交CD于點F,設點E運動路程為x,CF=y,如圖2所表示的是y與x的函數關系的大致圖象,給出下列結論:①a=3;②當CF=時,點E的運動路程為或或,則下列判斷正確的是( 。
A. ①②都對 B. ①②都錯 C. ①對②錯 D. ①錯②對
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com