【題目】【問題情境】

已知矩形的面積為a(a為常數(shù),a>0),當該矩形的長為多少時,它的周長最?最小值是多少?

【數(shù)學模型】

設該矩形的長為x,周長為y,則y與x的函數(shù)表達式為y=2(x+)(x>0).

【探索研究】

小彬借鑒以前研究函數(shù)的經(jīng)驗,先探索函數(shù)y=x+的圖象性質(zhì).

(1)結(jié)合問題情境,函數(shù)y=x+的自變量x的取值范圍是x>0,下表是y與x的幾組對應值.

x

1

2

3

m

y

4

3

2

2

2

3

4

①寫出m的值;

②畫出該函數(shù)圖象,結(jié)合圖象,得出當x=   時,y有最小值,y最小=   ;

提示:在求二次函數(shù)y=ax2+bx+c(a≠0)的最大(。┲禃r,除了通過觀察圖象,還可以通過配方得到.試用配方法求函數(shù)y=x+(x>0)的最小值,解決問題(2)

【解決問題】

(2)直接寫出“問題情境”中問題的結(jié)論.

【答案】1m=4; ②見解析;(3)長為時,它的周長最小,最小值是4

【解析】試題分析:1①觀察表格,即可得結(jié)論;②根據(jù)完全平方公式(a+b2=a2+2ab+b2,進行配方即可得到最小值;(2)根據(jù)完全平方公式(a+b2=a2+2ab+b2,y=2x+進行配方得到y=2[()2+2 ],即可求出答案.

試題解析:

1)①由題意m=4

②函數(shù)y=x+的圖象如圖:

觀察圖象可知,當x=1時,函數(shù)y=x+x0)的最小值是2

故答案為12

y=x+==+2

x0,所以≥0

所以當x=1時,的最小值為0

∴函數(shù)y=x+x0)的最小值是2

2)∵y=2[2+2]=22+4,

∴當span>=時,y的值最小,最小值為4

∴當x=時,y的值最小,最小值為4,

答:矩形的面積為aa為常數(shù),a0),當該矩形的長為時,它的周長最小,最小值是4

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在RtABC中,∠ACB=90°,AO是△ABC的角平分線.以O為圓心,OC為半徑作⊙O.

(1)求證:AB是⊙O的切線.

(2)已知AO交⊙O于點E,延長AO交⊙O于點D,tanD=,求的值.

(3)(3分)在(2)的條件下,設⊙O的半徑為3,求AB的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形ABCD中,AB1BC3

1)在圖中,PBC上一點,EF垂直平分AP,分別交AD、BC邊于點E、F,求證:四邊形AFPE是菱形;

2)在圖中利用直尺和圓規(guī)作出面積最大的菱形,使得菱形的四個頂點都在矩形ABCD的邊上,并直接標出菱形的邊長.(保留作圖痕跡,不寫作法)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】近年來購物的不同支付方式走進校園,某數(shù)學興趣小組就此進行了抽樣調(diào)查調(diào)查結(jié)果顯示,支付方式有:A、微信,B、支付寶,C、現(xiàn)金,D、其他.該小組對學校超市一天內(nèi)購買者的支付方式進行調(diào)查統(tǒng)計,得到如圖所示的兩幅不完整的統(tǒng)計圖,請你根據(jù)統(tǒng)計圖提供的信息,解答下列問題.

(1)求出這次抽樣調(diào)查的樣本容量

(2)請補全條形統(tǒng)計圖,并求出在扇形統(tǒng)計圖中A種支付方式所對應的圓心角的度數(shù)

(3)若該校約有1200名學生在小超市購物,請你估計使用AB兩種支付方式的學生共有多少名?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點P為定角∠AOB的平分線上的一個定點,且∠MPN∠AOB互補,若∠MPN在繞點P旋轉(zhuǎn)的過程中,其兩邊分別與OA、OB相交于M、N兩點,則以下結(jié)論:(1PM=PN恒成立;(2OM+ON的值不變;(3)四邊形PMON的面積不變;(4MN的長不變,其中正確的個數(shù)為( 。

A. 4B. 3C. 2D. 1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】探究與發(fā)現(xiàn)如圖1所示的圖形像我們常見的學習用品﹣﹣圓規(guī).我們不妨把這樣圖形叫做“規(guī)形圖”

(1)觀察“規(guī)形圖”,試探究∠BDC與∠A、∠B、∠C之間的關系,并說明理由;

(2)請你直接利用以上結(jié)論,解決以下三個問題

如圖2,把一塊三角尺XYZ放置在△ABC使三角尺的兩條直角邊XY、XZ恰好經(jīng)過點BC,∠A=40°,則∠ABX+∠ACX=   °;

如圖3,DC平分∠ADBEC平分∠AEB,若∠DAE=40°,∠DBE=130°,求∠DCE的度數(shù);

如圖4,∠ABD,∠ACD10等分線相交于點G1、G2…、G9,若∠BDC=133°,∠BG1C=70°,求∠A的度數(shù)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點P是菱形ABCD的對角線AC上的一個動點,過點P垂直于AC的直線交菱形ABCD的邊于M、N兩點設AC=2,BD=1,AP=xCMN的面積為y,則y關于x的函數(shù)圖象大致形狀是( )

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在同一個平面內(nèi),,.

(1)填空:________;

(2)如果OD平分,OE平分,那么的度數(shù)為;

(3)試問在(2)的條件下,如果將題目中改為,其他條件不變,你能求出的度數(shù)嗎?若能,請你寫出求解過程;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在等邊ABC內(nèi)有一點D,AD=4,BD=3,CD=5,將ABDA點逆時針旋轉(zhuǎn),使ABAC重合,點D旋轉(zhuǎn)至點E,則四邊形ADCE的面積為(  

A.12B.C.D.

查看答案和解析>>

同步練習冊答案