如圖,分別以Rt△ABC的斜邊AB,直角邊AC為邊向外作等邊△ABD和△ACE,F(xiàn)為AB的中點,DE,AB相交于點G,若∠BAC=300,下列結(jié)論:①EF⊥AC;②四邊形ADFE為平行四邊形;③AD=4AG;④△DBF≌△EFA.其中正確結(jié)論的序號是:(▲)


A、②④            B、①③    
C、②③④          D、①②③④       
D
∵△ACE是等邊三角形,
∴∠EAC=60°,AE=AC,
∵∠BAC=30°,
∴∠FAE=∠ACB=90°,AB=2BC,
∵F為AB的中點,
∴AB=2AF,
∴BC=AF,
∴△ABC≌△EFA,
∴FE=AB,
∴∠AEF=∠BAC=30°,
∴EF⊥AC,故①正確,
(含①的只有B和D,它們的區(qū)別在于有沒有④.它們都是含30°的直角三角形,并且斜邊是相等的),
∵AD=BD,BF=AF,
∴∠DFB=90°,∠BDF=30°,
∵∠FAE=∠BAC+∠CAE=90°,
∴∠DFB=∠EAF,
∵EF⊥AC,
∴∠AEF=30°,
∴∠BDF=∠AEF,
∴△DBF≌△EFA(AAS),故④正確.
∴AE=DF,
∵FE=AB,
∴四邊形ADFE為平行四邊形,故②正確;
∴AG= AF,
∴AG=AB,
∵AD=AB,
則AD=AG,故③,
故選D.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,矩形ABCD中,AB=3,BC=5,點P是BC邊上的一個動點(點P不與點B、C重合),現(xiàn)將△PCD沿直線PD折疊,使點C 落到點C’處;作∠BPC’的角平分線交AB于點E.設BP=x,BE=y, 則下列圖象中,能表示y與x的函數(shù)關(guān)系的圖象大致是(     )

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,△ABC是以AB為斜邊的直角三角形,AC=4,BC=3,P為AB上一動點,且PE⊥AC于E,PF⊥BC于F,則線段EF長度的最小值是              。

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,四邊形ABCD是平行四邊形,點E在邊BC上,如果點F是邊AD上的點,那么△CDF與△ABE不一定全等的條件是【   】
A.DF=BEB.AF=CEC.CF=AED.CF∥AE

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,在矩形ABCD中,點E是邊AD上一點,BC=2AB,AD=BE,那么∠ECD=    ▲    度

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,矩形ABCD的對角線AC=8cm,∠AOD=120º,則AB的長為【   】
A.cmB.2cmC.2cmD.4cm

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

在△ABC中(1)若∠A=60°,AB、AC邊上的高CE、BD交于點O。求∠BOC的度數(shù)。

(2)若∠A為鈍角,AB、AC邊上的高CE、BD所在直線交于點O,畫出圖形,并用量角器量一量∠BAC+∠BOC=______°,再用你已學過的數(shù)學知識加以說明。
(3)由(1)(2)可以得到,無論∠A為銳角還是鈍角,總有∠BAC+∠BOC=____°。

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

順次連結(jié)等腰梯形各邊中點所得的四邊形一定是( )
A.菱形B.矩形C.梯形D.正方形

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在平面直角坐標系中,網(wǎng)格中每一個小正方形的邊長為1個單位長度。(1)請在所給的網(wǎng)格內(nèi)畫出以線段AB、BC為邊的菱形并寫出點D的坐標            ;(2)線段BC的長為           ;
(3)菱形ABCD的面積為           

查看答案和解析>>

同步練習冊答案