【題目】在中,是的中點(diǎn),且,,與相交于點(diǎn),與相交于點(diǎn).
(1)求證:;
(2)若,,求的面積.
【答案】(1)見(jiàn)解析;(2)
【解析】
(1)由DE⊥BC,D是BC的中點(diǎn),根據(jù)線段垂直平分線的性質(zhì),可得BE=CE,又由AD=AC,易得,,即可證得△ABC∽△FCD;
(2)首先過(guò)A作AH⊥CD,垂足為H,易得△BDE∽△BHA,可求得AH的長(zhǎng),繼而求得△ABC的面積,然后由相似三角形面積比等于相似比的平方,求得△FCD的面積.
(1)證明:∵,
∵且是的中點(diǎn)
∴
∴
∴
(2)解:過(guò)A作AH⊥CD,垂足為H.
∵AD=AC,
∴DH=CH,
∴BD:BH=2:3,
∵ED⊥BC,
∴ED∥AH,
∴△BDE∽△BHA,
∴ED:AH=BD:BH=2:3,
∵DE=3,
∴AH=,
∵△ABC∽△FCD,BC=2CD,
∴.
∵S△ABC=×BC×AH=×8×=18,
∴S△FCD=S△ABC=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,在△ABC中,AB=AC,以AB為直徑的⊙O交BC于點(diǎn)D,過(guò)點(diǎn)D作DE⊥AC于點(diǎn)E.
(1)求證:DE是⊙O的切線.
(2)若⊙O的半徑為3cm,∠C=30°,求圖中陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,規(guī)定:拋物線的伴隨直線為.例如:拋物線的伴隨直線為,即y=2x﹣1.
(1)在上面規(guī)定下,拋物線的頂點(diǎn)坐標(biāo)為 ,伴隨直線為 ,拋物線與其伴隨直線的交點(diǎn)坐標(biāo)為 和 ;
(2)如圖,頂點(diǎn)在第一象限的拋物線與其伴隨直線相交于點(diǎn)A,B(點(diǎn)A在點(diǎn)B的左側(cè)),與x軸交于點(diǎn)C,D.
①若∠CAB=90°,求m的值;
②如果點(diǎn)P(x,y)是直線BC上方拋物線上的一個(gè)動(dòng)點(diǎn),△PBC的面積記為S,當(dāng)S取得最大值時(shí),求m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商場(chǎng)舉辦抽獎(jiǎng)活動(dòng),規(guī)則如下:在不透明的袋子中有2個(gè)紅球和2個(gè)黑球,這些球除顏色外都相同,顧客每次摸出一個(gè)球,若摸到紅球,則獲得1份獎(jiǎng)品,若摸到黑球,則沒(méi)有獎(jiǎng)品。
(1)如果小芳只有一次摸球機(jī)會(huì),那么小芳獲得獎(jiǎng)品的概率為 ;
(2)如果小芳有兩次摸球機(jī)會(huì)(摸出后不放回),求小芳獲得2份獎(jiǎng)品的概率。(請(qǐng)用“畫(huà)樹(shù)狀圖”或“列表”等方法寫(xiě)出分析過(guò)程)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在⊙O的內(nèi)接四邊形ABCD中,∠BCD=120°,AC平分∠BCD.
(1)求證:△ABD是等邊三角形;
(2)若BD=6cm,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某超市銷(xiāo)售一種成本為40元千克的商品,若按50元千克銷(xiāo)售,一個(gè)月可售出500千克,現(xiàn)打算漲價(jià)銷(xiāo)售,據(jù)市場(chǎng)調(diào)查,漲價(jià)x元時(shí),月銷(xiāo)售量為m千克,m是x的一次函數(shù),部分?jǐn)?shù)據(jù)如下表:
觀察表中數(shù)據(jù),直接寫(xiě)出m與x的函數(shù)關(guān)系式:_______________:當(dāng)漲價(jià)5元時(shí),計(jì)算可得月銷(xiāo)售利潤(rùn)是___________元;
當(dāng)售價(jià)定多少元時(shí),會(huì)獲得月銷(xiāo)售最大利潤(rùn),求出最大利潤(rùn).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】正方形ABCD的邊長(zhǎng)為3,E、F分別是AB、BC邊上的點(diǎn),且∠EDF=45°.將△DAE繞點(diǎn)D逆時(shí)針旋轉(zhuǎn)90°,得到△DCM.
(1)求證:EF=FM
(2)當(dāng)AE=1時(shí),求EF的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知關(guān)于x的一元二次方程x2+(2m+1)x+m22=0.
(1)若該方程有兩個(gè)實(shí)數(shù)根,求m的最小整數(shù)值;
(2)若方程的兩個(gè)實(shí)數(shù)根為x1,x2,且(x1x2)2+m2=21,求m的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com