【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,有下列5個結(jié)論:①abc<0;②b<a+c;③4a+2b+c>0;④2c<3b;⑤a+b<m(am+b)(m≠1且為實數(shù)),其中正確的個數(shù)是( )
A. 2個 B. 3個 C. 4個 D. 5個
【答案】B
【解析】由拋物線的開口方向判斷a與0的關系,由拋物線與y軸的交點判斷c與0的關系,然后根據(jù)對稱軸及拋物線與x軸交點情況進行推理,進而對所得結(jié)論進行判斷.
解:①圖象開口向下,與y軸交于正半軸,對稱軸為x=1,能得到:a<0,c>0,=1,
∴b=﹣2a>0,
∴abc<0,此結(jié)論正確;
②當x=﹣1時,由圖象知y<0,
把x=﹣1代入解析式得:a﹣b+c<0,
∴b>a+c,
∴②錯誤;
③圖象開口向下,與y軸交于正半軸,對稱軸為x=1,
能得到:a<0,c>0,=1,
所以b=﹣2a,
所以4a+2b+c=4a﹣4a+c>0.
∴③正確;
④∵由①②知b=﹣2a且b>a+c,
∴2c<3b,④正確;
⑤∵x=1時,y=a+b+c(最大值),
x=m時,y=am2+bm+c,
∵m≠1的實數(shù),
∴a+b+c>am2+bm+c,
∴a+b>m(am+b).
∴⑤錯誤.
故選:B.
“點睛”此題主要考查圖象與二次函數(shù)系數(shù)之間的關系,二次函數(shù)與方程之間的轉(zhuǎn)換,根的判別式的熟練運用.會利用特殊值代入法求得特殊的式子,如:y=a+b+c,y=a-b+c,然后根據(jù)圖象判斷其值.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,點A的坐標是(﹣2,3),點B的坐標是(1,﹣1),連接AB,點C是坐標軸上任意一點,則使△ABC為等腰三角形的點C共有_____個.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】圖①、圖②均是5×6的正方形網(wǎng)格,每個小正方形的頂點稱為格點,小正方形的邊長為1,點A、E、F均在格點上.在圖①、圖②中,只用無刻度的直尺,在給定的網(wǎng)格中按要求畫圖,所畫圖形的頂點均在格點上,不要求寫出畫法.
(1)在圖①中畫一個正方形ABCD,使其面積為5.
(2)在圖②中畫一個等腰△EFG,使EF為其底邊.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在一個坡角為30°的斜坡上有一電線桿AB,當太陽光與水平線成45°角時,測得該桿在斜坡上的影長BC為20m.求電線桿AB的高(精確到0.1m,參考數(shù)值:≈1.73,≈1.41).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a,b,c是常數(shù),a≠0)圖象的對稱軸是直線x=﹣1,與x軸的一個交點是A(﹣3,0)其圖象的一部分如圖所示,對于下列說法:①2a=b;②abc>0,③若點B(﹣2,y1),C(﹣,y2)是圖象上兩點,則y1<y2;④圖象與x軸的另一個交點的坐標為(1,0).其中正確的是_____(把正確說法的序號都填上)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,拋物線y=x2﹣2x﹣3與x軸交于A,B兩點(點A在點B的左側(cè)),與y軸交于點C,對稱軸x軸交于點D,點E(4,n)在拋物線上.
(1)求直線AE的解析式;
(2)連接CB,點K是線段CB的中點,點M是y軸上的一點,點P為直線CE下方拋物線上的一點,連接PC,PE,當△PCE的面積最大時,求KM+PM的最小值;
(3)點G是線段CE的中點,將拋物線y=x2﹣2x﹣3沿x軸正方向平移得到新拋物線y′,y′經(jīng)過點D,y′的頂點為點F,在新拋物線y′的對稱軸上,是否存在一點Q,使得△FGQ為等腰三角形?若存在,直接寫出點Q的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,某景區(qū)的兩個景點A、B處于同一水平地面上、一架無人機在空中沿MN方向水平飛行進行航拍作業(yè),MN與AB在同一鉛直平面內(nèi),當無人機飛行至C處時、測得景點A的俯角為45°,景點B的俯角為30°,此時C到地面的距離CD為100米,則兩景點A、B間的距離為__米(結(jié)果保留根號).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com