【題目】把下列各數(shù)填入表示它所在的數(shù)集的大括號:
﹣2.4,3,21.08,0,﹣100,﹣(﹣2.28),,﹣|﹣4|,
正有理數(shù)集合:{ }
負(fù)有理數(shù)集合:{ }
整數(shù)集合:{ }
分?jǐn)?shù)集合:{ }.
【答案】正有理數(shù)集合:{ 3,21.08,﹣(﹣2.28) }
負(fù)有理數(shù)集合:{ ﹣2.4,﹣100, ,﹣|﹣4| }
整數(shù)集合:{ 3,0,﹣100,﹣|﹣4| }
分?jǐn)?shù)集合:{ ﹣2.4,21.08,﹣(﹣2.8), }.
【解析】試題分析:根據(jù)有理數(shù)的分類即可得出答案.
解:正有理數(shù)集合:{3,21.08,﹣(﹣2.28)};
負(fù)有理數(shù)集合:{﹣2.4,﹣100, ,﹣|﹣4|};
整數(shù)集合:{3,0,﹣100,﹣|﹣4|};
分?jǐn)?shù)集合:{﹣2.4,21.08,﹣(﹣2.8),},
科目:初中數(shù)學(xué) 來源: 題型:
【題目】己知數(shù)軸上三點對應(yīng)的數(shù)分別為、3、5,點為數(shù)軸上任意一點,其對應(yīng)的數(shù)為.點與點之間的距離表示為,點與點之間的距離表示為.
(1)若,則 ;
(2)若,求的值;
(3)若點從點出發(fā),以每秒3個單位的速度向右運動,點以每秒1個單位的速度向左運動,點以每秒2個單位的速度向右運動,三點同時出發(fā).設(shè)運動時間為秒,試判斷:的值是否會隨著的變化而變化?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知二次函數(shù)圖象與x軸交于A,B兩點,對稱軸為直線x=2,下列結(jié)論:①abc>0; ②4a+b=0;③若點A坐標(biāo)為(1,0),則線段AB=5; ④若點M(x1,y1)、N(x2,y2)在該函數(shù)圖象上,且滿足0<x1<1,2<x2<3,則y1<y2其中正確結(jié)論的序號為( )
A. ①,② B. ②,③ C. ③,④ D. ②,④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系內(nèi),梯形OABC的頂點坐標(biāo)分別是:A(3,4),B(8,4),C(11,0),點P(t,0)是線段OC上一點,設(shè)四邊形ABCP的面積為S.
(1)過點B作BE⊥x軸于點E,則BE= ,用含t的代數(shù)式表示PC= .
(2)求S與t的函數(shù)關(guān)系.
(3)當(dāng)S=20時,直接寫出線段AB與CP的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,BD、BE分別是高和角平分線,點F在CA的延長線上,F(xiàn)H⊥BE交BD于G,交BC于H,下列結(jié)論:①∠DBE=∠F;②2∠BEF=∠BAF+∠C;③∠F=(∠BAC﹣∠C);④∠BGH=∠ABE+∠C.
其中正確的是( 。
A.①②③B.①③④C.①②③④D.①②④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖, 在直角坐標(biāo)系中,長方形ABCD的邊BC在X軸上,點B、D的坐標(biāo)分別為B(1,0),D(3,3).
(1)直接寫出點A、點C的坐標(biāo):A: C: ;
(2)若反比例函數(shù) 的圖象經(jīng)過直線AC上的點E,且點E的坐標(biāo)為(2,m),求 的值及反比例函數(shù)的解析式;
(3)若(2)中的反比例函數(shù)的圖象與CD相交于點F,連接 EF,在線段AB上(端點除外)找一點P,使得:S△PEF=S△cEF,并求出點P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y=ax+b(a≠0)的圖象與反比例函數(shù)(k≠0)的圖象交于A(﹣3,2),B(2,n).
(1)求反比例函數(shù)的解析式;
(2)求一次函數(shù)y=ax+b的解析式;
(3)觀察圖象,直接寫出不等式ax+b<的解集.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】由一些大小相同的小正方體組成的簡單幾何體的主視圖和俯視圖如圖29-29所示.
(1)請你畫出這個幾何體的一種左視圖.
(2)若組成這個幾何體的小正方體的塊數(shù)為n,請你寫出n的所有可能值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com