【題目】某課題小組為了解某品牌電動自行車的銷售情況,對某專賣店第一季度該品牌A、B、C、D四種型號電動車的銷量做了統(tǒng)計,繪制成如圖所示的兩幅統(tǒng)計圖(均不完整)
(1)該店第一季度售出這種品牌的電動自行車共多少輛?
(2)把兩幅統(tǒng)計圖補充完整.
【答案】
(1)解:該店第一季度售出這種品牌的電動自行車共210÷35%=600輛.
(2)解:C種型號電動車的銷量600﹣150﹣210﹣60=180,
D種型號電動車的銷量占 ×100%=10%,
A種型號電動車的銷量占 ×100%=25%.
補充完整的統(tǒng)計圖如圖所示:
【解析】(1)根據(jù)B品牌210輛占總體的35%,即可求得總體;(2)根據(jù)(1)中求得的總數(shù)和扇形統(tǒng)計圖中C品牌所占的百分比即可求得C品牌的數(shù)量,進而補全條形統(tǒng)計圖;根據(jù)條形統(tǒng)計圖中A、D的數(shù)量和總數(shù)即可求得所占的百分比,從而補全扇形統(tǒng)計圖;
【考點精析】解答此題的關(guān)鍵在于理解扇形統(tǒng)計圖的相關(guān)知識,掌握能清楚地表示出各部分在總體中所占的百分比.但是不能清楚地表示出每個項目的具體數(shù)目以及事物的變化情況,以及對條形統(tǒng)計圖的理解,了解能清楚地表示出每個項目的具體數(shù)目,但是不能清楚地表示出各個部分在總體中所占的百分比以及事物的變化情況.
科目:初中數(shù)學 來源: 題型:
【題目】代數(shù)式2x+3中,當x取a﹣3時,問2x+3是不是a的函數(shù)?若不是,請說明理由;若是,也請說明理由,并請以a的取值為橫坐標,對應的2x+3值為縱坐標,畫出其圖象.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,小方格邊長為1個單位,
(1)請寫出△ABC各點的坐標.
(2)求出S△ABC .
(3)若把△ABC向上平移2個單位,再向右平移2個單位△A′B′C′,在圖中畫出△A′B′C′.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列事件是必然事件的為( )
A.購買一張彩票,中獎
B.通常加熱到100℃時,水沸騰
C.任意畫一個三角形,其內(nèi)角和是360°
D.射擊運動員射擊一次,命中靶心
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1所示,已知拋物線的頂點為D,與x軸交于A、B兩點,與y軸交于C點,E為對稱軸上的一點,連接CE,將線段CE繞點E按逆時針方向旋轉(zhuǎn)90°后,點C的對應點C′恰好落在y軸上.
(1)直接寫出D點和E點的坐標;
(2)點F為直線C′E與已知拋物線的一個交點,點H是拋物線上C與F之間的一個動點,若過點H作直線HG與y軸平行,且與直線C′E交于點G,設(shè)點H的橫坐標為m(0<m<4),那么當m為何值時,=5:6?
(3)圖2所示的拋物線是由向右平移1個單位后得到的,點T(5,y)在拋物線上,點P是拋物線上O與T之間的任意一點,在線段OT上是否存在一點Q,使△PQT是等腰直角三角形?若存在,求出點Q的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列命題中,真命題是( )
A. 兩條對角線互相平分的四邊形是平行四邊形
B. 兩條對角線互相垂直的四邊形是菱形
C. 兩條對角線互相垂直且相等的四邊形是正方形
D. 兩條對角線相等的四邊形是矩形
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在菱形ABCD中,AB=8,點E,F(xiàn)分別在AB,AD上,且AE=AF,過點E作EG∥AD交CD于點G,過點F作FH∥AB交BC于點H,EG與FH交于點O.當四邊形AEOF與四邊形CGOH的周長之差為12時,AE的值為( )
A.6.5
B.6
C.5.5
D.5
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知Rt△ACB中,∠C=90°,∠BAC=45°.
(1)(4分)用尺規(guī)作圖,在CA的延長線上截取AD=AB,并連接BD(不寫作法,保留作圖痕跡);
(2)(4分)求∠BDC的度數(shù);
(3)(4分)定義:在直角三角形中,一個銳角A的鄰邊與對邊的比叫做∠A的余切,記作cotA,即,根據(jù)定義,利用圖形求cot22.5°的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com