【題目】二次函數(shù)y=x2-2mx+3(m>)的圖象與x軸交于點(diǎn)A(a,0)和點(diǎn)B(a+n,0)(n>0且n為整數(shù)),與y軸交于C點(diǎn).
(1)若a=1,①求二次函數(shù)關(guān)系式;②求△ABC的面積;
(2)求證:a=m-;
(3)線段AB(包括A、B)上有且只有三個點(diǎn)的橫坐標(biāo)是整數(shù),求a的值.
【答案】(1)y=x2-4x+3;3;(2)證明見解析;(3)a=1或a=.
【解析】
試題(1)①首先根據(jù)a=1求得A的坐標(biāo),然后代入二次函數(shù)的解析式,求得m的值即可確定二次函數(shù)的解析式;
②根據(jù)解析式確定拋物線與坐標(biāo)軸的交點(diǎn)坐標(biāo),從而確定三角形的面積;
(2)將原二次函數(shù)配方后即可確定其對稱軸為x=m,然后根據(jù)A、B兩點(diǎn)關(guān)于x=m對稱得到a+n-m=m-a,從而確定a、m、n之間的關(guān)系;
(3)根據(jù)a=m-得到A(m-,0)代入y=(x-m)2-m2+3得0=(m--m)2-m2+3,求得m的值即可確定a的值.
試題解析:(1)①∵a=1,
∴A(1,0),
代入y=x2-2mx+3得1-2m+3=0,解得m=2,
∴y=x2-4x+3;
②在y=x2-4x+3中,當(dāng)y=0時,有x2-4x+3=0可得x=1或x=3,
∴A(1,0)、B(3,0),
∴AB=2再根據(jù)解析式求出C點(diǎn)坐標(biāo)為(0,3),
∴OC=3,
△ABC的面積=×2×3=3;
(2)∵y=x2-2mx+3=(x-m)2-m2+3,
∴對稱軸為直線x=m,
∵二次函數(shù)y=x2-2mx+3的圖象與x軸交于點(diǎn)A和點(diǎn)B
∴點(diǎn)A和點(diǎn)B關(guān)于直線x=m對稱,
∴a+n-m=m-a,
∴a=m-;
(3)y=x2-2mx+3(m>)化為頂點(diǎn)式為y=(x-m)2-m2+3(m>)
①當(dāng)a為整數(shù),因?yàn)?/span>n>0且n為整數(shù) 所以a+n是整數(shù),
∵線段AB(包括A、B)上有且只有三個點(diǎn)的橫坐標(biāo)是整數(shù),
∴n=2,
∴a=m-1,
∴A(m-1,0)代入y=(x-m)2-m2+3得(x-m)2-m2+3=0,
∴m2-4=0,
∴m=2,m=-2(舍去),
∴a=2-1=1,
②當(dāng)a不是整數(shù),因?yàn)?/span>n>0且n為整數(shù) 所以a+n不是整數(shù),
∵線段AB(包括A、B)上有且只有三個點(diǎn)的橫坐標(biāo)是整數(shù),
∴n=3,
∴a=m-
∴A(m-,0)代入y=(x-m)2-m2+3得0=(m--m)2-m2+3,
∴m2=,
∴m=,m=-(舍去),
∴a=,
綜上所述:a=1或a=.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在矩形ABCD中,M為AD邊上一點(diǎn),MB平分∠AMC.
(1)如圖1,求證:BC=MC;
(2)如圖2,G為BM的中點(diǎn),連接AG、DG,過點(diǎn)M作MN∥AB交DG于點(diǎn)E、交BC于點(diǎn)N.
①求證:AG⊥DG;
②當(dāng)DGGE=13時,求BM的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某射擊隊教練為了了解隊員訓(xùn)練情況,從隊員中選取甲、乙兩名隊員進(jìn)行射擊測試,相同條件下各射靶5次,成績統(tǒng)計如下:
命中環(huán)數(shù) | 6 | 7 | 8 | 9 | 10 |
甲命中相應(yīng)環(huán)數(shù)的次數(shù) | 0 | 1 | 3 | 1 | 0 |
乙命中相應(yīng)環(huán)數(shù)的次數(shù) | 2 | 0 | 0 | 2 | 1 |
(1)根據(jù)上述信息可知:甲命中環(huán)數(shù)的中位數(shù)是_____環(huán),乙命中環(huán)數(shù)的眾數(shù)是______環(huán);
(2)試通過計算說明甲、乙兩人的成績誰比較穩(wěn)定?
(3)如果乙再射擊1次,命中8環(huán),那么乙射擊成績的方差會變。ㄌ“變大”、“變小”或“不變”)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】亞健康是時下社會熱門話題,進(jìn)行體育鍛煉是遠(yuǎn)離亞健康的一種重要方式,為了解某市初中學(xué)生每天進(jìn)行體育鍛煉的時間情況,隨機(jī)抽樣調(diào)查了100名初中學(xué)生,根據(jù)調(diào)查結(jié)果得到如圖所示的統(tǒng)計圖表.
請根據(jù)圖表信息解答下列問題:
(1)a=_____;
(2)補(bǔ)全條形統(tǒng)計圖;
(3)小王說:“我每天的鍛煉時間是調(diào)查所得數(shù)據(jù)的中位數(shù)”,問小王每天進(jìn)行體育鍛煉的時間在什么范圍內(nèi)?
(4)據(jù)了解該市大約有30萬名初中學(xué)生,請估計該市初中學(xué)生每天進(jìn)行體育鍛煉時間在1小時以上的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】全面兩孩政策實(shí)施后,甲,乙兩個家庭有了各自的規(guī)劃.假定生男生女的概率相同,回答下列問題:
(1)甲家庭已有一個男孩,準(zhǔn)備再生一個孩子,則第二個孩子是女孩的概率是 ;
(2)乙家庭沒有孩子,準(zhǔn)備生兩個孩子,求至少有一個孩子是女孩的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】隨著天氣的逐漸炎熱(如圖1),遮陽傘在我們的日常生活中隨處可見.如圖2所示,遮陽傘立柱OA垂直于地面,當(dāng)將遮陽傘撐開至OD位置時,測得∠BOD=45°,當(dāng)將遮陽傘撐開至OE位置時,測得∠BOE=60°,且此時遮陽傘邊沿上升的豎直高度BC為30cm,求當(dāng)遮陽傘撐開至OE位置時,傘下半徑EC的長.(結(jié)果保留根號).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩車從A地出發(fā),勻速駛向B地.甲車以80km/h的速度行駛1h后,乙車才沿相同線路行駛.乙車先到達(dá)B地并停留1h后,再以原速按原路返回,直至與甲車相遇.在此過程中,兩車之間的距離y(km)與乙車行駛時間x(h)之間的函數(shù)關(guān)系如圖所示.下列說法:①乙車的速度是120km/h;②m=160;③點(diǎn)H的坐標(biāo)是(7,80);④n=7.5.其中說法正確的是_________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場用2500元購進(jìn)A、B兩種新型節(jié)能臺燈共50盞,這兩種臺燈的進(jìn)價、標(biāo)價如下表所示.
類型 價格 | A型 | B型 |
進(jìn)價(元/盞) | 40 | 65 |
標(biāo)價(元/盞) | 60 | 100 |
(1)這兩種臺燈各購進(jìn)多少盞?
(2)在每種臺燈銷售利潤不變的情況下,若該商場計劃銷售這批臺燈的總利潤至少為1400元,問至少需購進(jìn)B種臺燈多少盞?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某景區(qū)內(nèi)有一塊矩形油菜花田地(數(shù)據(jù)如圖示,單位:m.)現(xiàn)在其中修建一條觀花道(圖中陰影部分)供游人賞花.設(shè)改造后剩余油菜花地所占面積為ym2.
(1)求y與x的函數(shù)表達(dá)式;
(2)若改造后觀花道的面積為13m2,求x的值;
(3)若要求 0.5≤ x ≤1,求改造后剩余油菜花地所占面積的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com