【題目】已知點(diǎn)在數(shù)軸上對(duì)應(yīng)的數(shù)為,點(diǎn)對(duì)應(yīng)的數(shù)為,且G為線段上一點(diǎn),兩點(diǎn)分別從點(diǎn)沿方向同時(shí)運(yùn)動(dòng),設(shè)點(diǎn)的運(yùn)動(dòng)速度為點(diǎn)的運(yùn)動(dòng)速度為,運(yùn)動(dòng)時(shí)間為.
(1)點(diǎn)對(duì)應(yīng)的數(shù)為 ,點(diǎn)對(duì)應(yīng)的數(shù)為 ;
(2)若,試求為多少時(shí),兩點(diǎn)的距離為;
(3)若,點(diǎn)為數(shù)軸上任意一點(diǎn),且,請直接寫出的值.
【答案】(1); ;(2)或;(3)或.
【解析】
(1)根據(jù)平方與絕對(duì)值的和為0,可得平方、絕對(duì)值同時(shí)為0,可得答案;
(2)分兩種情況討論:①,②分別列式計(jì)算即可;
(3)也分兩種情況討論:①當(dāng)點(diǎn)H在點(diǎn)B的左側(cè)時(shí),設(shè),列式計(jì)算即可;②當(dāng)點(diǎn)H在點(diǎn)B的右側(cè)時(shí),直接列式計(jì)算即可;
(1)∵,
∴,,
∴,,
故答案為:;;
(2)∵,且,
∴,
①
即
解得:
②
即
解得:,
(3)①當(dāng)點(diǎn)H在點(diǎn)B的左側(cè)時(shí),如圖:
設(shè),
∵,,
∴,,
∵,
∴,
∴,
∴,
②當(dāng)點(diǎn)H在點(diǎn)B的右側(cè)時(shí),如圖:
∵,
而
∴
∴,
故答案為:或
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖中是拋物線形拱橋,P處有一照明燈,水面OA寬4m,從O、A兩處觀測P處,仰角分別為α、β,且tanα=,tanβ=,以O為原點(diǎn),OA所在直線為x軸建立直角坐標(biāo)系.若水面上升1m,水面寬為( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,E是BC的中點(diǎn),連接AE,過點(diǎn)E作EF⊥AE交DC于點(diǎn)F,連接AF.設(shè)=k,下列結(jié)論:(1)△ABE∽△ECF,(2)AE平分∠BAF,(3)當(dāng)k=1時(shí),△ABE∽△ADF,其中結(jié)論正確的是( )
A.(1)(2)(3) B.(1)(3) C.(1)(2) D.(2)(3)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】以直線上點(diǎn)為端點(diǎn)作射線,使,將直角的直角頂點(diǎn)放在點(diǎn)處.
(1)若直角的邊在射線上(圖①),求的度數(shù);
(2)將直角繞點(diǎn)按逆時(shí)針方向轉(zhuǎn)動(dòng),使得所在射線平分(圖②),說明所在射線是的平分線;
(3)將直角繞點(diǎn)按逆時(shí)針方向轉(zhuǎn)動(dòng)到某個(gè)位置時(shí),恰好使得(圖③),求的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】元旦期間,丹東新一百商城銷售兩種商品,種商品每件進(jìn)價(jià)元,售價(jià)元;種商品每件售價(jià)元,利潤率為.
(1)每件種商品利潤率為 ,種商品每件進(jìn)價(jià)為 元;
(2)由于熱銷,商城決定再購進(jìn)上面的兩種商品共件(每件商品的進(jìn)價(jià)不變),采購部預(yù)算共支出元,財(cái)務(wù)部算了一下,說:“如果你用這些錢買兩種商品,那么賬肯定算錯(cuò)了!”請你用學(xué)過的方程知識(shí)解釋財(cái)務(wù)部為什么會(huì)這樣說?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在銳角△ABC中,∠ABC=45°,高線AD、BE相交于點(diǎn)F.
(1)判斷BF與AC的數(shù)量關(guān)系并說明理由;
(2)如圖2,將△ACD沿線段AD對(duì)折,點(diǎn)C落在BD上的點(diǎn)M,AM與BE相交于點(diǎn)N,當(dāng)DE∥AM時(shí),判斷NE與AC的數(shù)量關(guān)系并說明理由.
【答案】(1)BF=AC,理由見解析;(2)NE=AC,理由見解析.
【解析】試題分析:(1)如圖1,證明△ADC≌△BDF(AAS),可得BF=AC;
(2)如圖2,由折疊得:MD=DC,先根據(jù)三角形中位線的推論可得:AE=EC,由線段垂直平分線的性質(zhì)得:AB=BC,則∠ABE=∠CBE,結(jié)合(1)得:△BDF≌△ADM,則∠DBF=∠MAD,最后證明∠ANE=∠NAE=45°,得AE=EN,所以EN=AC.
試題解析:
(1)BF=AC,理由是:
如圖1,∵AD⊥BC,BE⊥AC,
∴∠ADB=∠AEF=90°,
∵∠ABC=45°,
∴△ABD是等腰直角三角形,
∴AD=BD,
∵∠AFE=∠BFD,
∴∠DAC=∠EBC,
在△ADC和△BDF中,
∵,
∴△ADC≌△BDF(AAS),
∴BF=AC;
(2)NE=AC,理由是:
如圖2,由折疊得:MD=DC,
∵DE∥AM,
∴AE=EC,
∵BE⊥AC,
∴AB=BC,
∴∠ABE=∠CBE,
由(1)得:△ADC≌△BDF,
∵△ADC≌△ADM,
∴△BDF≌△ADM,
∴∠DBF=∠MAD,
∵∠DBA=∠BAD=45°,
∴∠DBA﹣∠DBF=∠BAD﹣∠MAD,
即∠ABE=∠BAN,
∵∠ANE=∠ABE+∠BAN=2∠ABE,
∠NAE=2∠NAD=2∠CBE,
∴∠ANE=∠NAE=45°,
∴AE=EN,
∴EN=AC.
【題型】解答題
【結(jié)束】
19
【題目】某校學(xué)生會(huì)決定從三明學(xué)生會(huì)干事中選拔一名干事當(dāng)學(xué)生會(huì)主席,對(duì)甲、乙、丙三名候選人進(jìn)行了筆試和面試,三人的測試成績?nèi)缦卤硭荆?/span>
測試項(xiàng)目 | 測試成績/分 | ||
甲 | 乙 | 丙 | |
筆試 | 75 | 80 | 90 |
面試 | 93 | 70 | 68 |
根據(jù)錄用程序,學(xué)校組織200名學(xué)生采用投票推薦的方式,對(duì)三人進(jìn)行民主測評(píng),三人得票率如扇形統(tǒng)計(jì)圖所示(沒有棄權(quán),每位同學(xué)只能推薦1人),每得1票記分.
(1)分別計(jì)算三人民主評(píng)議的得分;
(2)根據(jù)實(shí)際需要,學(xué)校將筆試、面試、民主評(píng)議三項(xiàng)得分按3:3:4的比例確定個(gè)人成績,三人中誰會(huì)當(dāng)選學(xué)生會(huì)主席?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知正比例函數(shù)y=2x與反比例函數(shù)y=(k>0)的圖象交于A、B兩點(diǎn),且點(diǎn)A的橫坐標(biāo)為4,
(1)求k的值;
(2)根據(jù)圖象直接寫出正比例函數(shù)值小于反比例函數(shù)值時(shí)x的取值范圍;
(3)過原點(diǎn)O的另一條直線l交雙曲線y=(k>0)于P、Q兩點(diǎn)(P點(diǎn)在第一象限),若由點(diǎn)A、P、B、Q為頂點(diǎn)組成的四邊形面積為224,求點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠A=90°,O是BC邊上一點(diǎn),以O為圓心的半圓與AB邊相切于點(diǎn)D,與AC、BC邊分別交于點(diǎn)E、F、G,連接OD,已知BD=2,AE=3,tan∠BOD=.
(1)求⊙O的半徑OD;
(2)求證:AE是⊙O的切線;
(3)求圖中兩部分陰影面積的和.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】點(diǎn)A和B在數(shù)軸上對(duì)應(yīng)的數(shù)分別為a和b,且(a+5)2+|b﹣4|=0.
(1)求線段AB的長;
(2)點(diǎn)C在數(shù)軸上所對(duì)應(yīng)的數(shù)為x,且x是方程x﹣3=x﹣1的解,在線段BC上是否存在點(diǎn)D,使得AD+BD=CD?若存在,請求出點(diǎn)D在數(shù)軸上所對(duì)應(yīng)的數(shù),若不存在,請說明理由;
(3)如圖,PO=1,點(diǎn)P在AB的上方,且∠POB=60°,點(diǎn)P繞著點(diǎn)O以30度/秒的速度在圓周上順時(shí)針旋轉(zhuǎn)一周停止,同時(shí)點(diǎn)Q沿線段AB自點(diǎn)A向點(diǎn)B運(yùn)動(dòng),若P、Q兩點(diǎn)能相遇,求點(diǎn)Q的運(yùn)動(dòng)速度.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com