【題目】在如圖的方格紙中(每個小方格的邊長都是1個單位)有一點(diǎn)O和△ABC.
(1)請以點(diǎn)O為位似中心,把△ABC縮小為原來的一半(不改變方向),得到△A′B′C′;
(2)請用適當(dāng)?shù)姆绞矫枋觥?/span>A′B′C′的頂點(diǎn)A′、B′、C′的位置.
【答案】(1)見解析;(2)見解析.
【解析】
運(yùn)用相似的原理,進(jìn)行圖形的擴(kuò)大或者縮小變換,要求熟練掌握相似作圖.
(1)利用三角形相似作圖,連接OA,OB,OC,分別找出這三條線段的中點(diǎn)A′、B′、C′,順次連接A′、B′、C′即可得到△A′B′C′;如圖所示.
(2)描述△A′B′C′的頂點(diǎn)A′、B′、C′的位置可建立坐標(biāo)系用坐標(biāo)來描述;也可說成點(diǎn)A′、B′、C′的位置分別為OA、OB、OC的中點(diǎn)等.
故答案為:點(diǎn)A′、B′、C′的位置分別為OA、OB、OC的中點(diǎn)
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,∠BAC=30°,BC=4,D是AB上一個動點(diǎn),將點(diǎn)D繞點(diǎn)C順時(shí)針旋轉(zhuǎn)60°,得到點(diǎn)E,連接AE.若AE=,則BD=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,點(diǎn)E,N,P,G分別在邊AB,BC,CD,DA上,點(diǎn)M,F,Q都在對角線BD上,且四邊形MNPQ和AEFG均為正方形,則的值等于 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知正方形ABCD中,,繞點(diǎn)A順時(shí)針旋轉(zhuǎn),它的兩邊分別交CB、或它們的延長線于點(diǎn)M、N,當(dāng)繞點(diǎn)A旋轉(zhuǎn)到時(shí)如圖,則
線段BM、DN和MN之間的數(shù)量關(guān)系是______;
當(dāng)繞點(diǎn)A旋轉(zhuǎn)到時(shí)如圖,線段BM、DN和MN之間有怎樣的數(shù)量關(guān)系?寫出猜想,并加以證明;
當(dāng)繞點(diǎn)A旋轉(zhuǎn)到如圖的位置時(shí),線段BM、DN和MN之間又有怎樣的數(shù)量關(guān)系?請直接寫出你的猜想.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,∠BAC=90°,四邊形EBOC是平行四邊形,EB交⊙O于點(diǎn)D,連接CD并延長交AB的延長線于點(diǎn)F.
(1)求證:CF是⊙O的切線;
(2)若∠F=30°,EB=8,求圖中陰影部分的面積.(結(jié)果保留根號和π)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線y=x2+(2n﹣1)x+n2﹣1(n為常數(shù)).
(1)當(dāng)該拋物線經(jīng)過坐標(biāo)原點(diǎn),并且頂點(diǎn)在第四象限時(shí),求出它所對應(yīng)的函數(shù)關(guān)系式;
(2)設(shè)A是(1)所確定的拋物線上位于x軸下方、且在對稱軸左側(cè)的一個動點(diǎn),過A作x軸的平行線,交拋物線于另一點(diǎn)D,再作AB⊥x軸于B,DC⊥x軸于C.
①當(dāng)BC=1時(shí),求矩形ABCD的周長;
②試問矩形ABCD的周長是否存在最大值?如果存在,請求出這個最大值,并指出此時(shí)A點(diǎn)的坐標(biāo).如果不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,反比例函數(shù)(k是常數(shù),且)的圖象經(jīng)過點(diǎn).
(1)若b=4,求y關(guān)于x的函數(shù)表達(dá)式;
(2)點(diǎn)也在反比例函數(shù)y的圖象上:
①當(dāng)且時(shí),求b的取值范圍;
②若B在第二象限,求證:.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,已知AB是⊙O的直徑,AC是⊙O的弦,過O點(diǎn)作OF⊥AB交⊙O于點(diǎn)D,交AC于點(diǎn)E,交BC的延長線于點(diǎn)F,點(diǎn)G是EF的中點(diǎn),連接CG
(1)判斷CG與⊙O的位置關(guān)系,并說明理由;
(2)求證:2OB2=BCBF;
(3)如圖2,當(dāng)∠DCE=2∠F,CE=3,DG=2.5時(shí),求DE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,網(wǎng)格中每個小正方形的邊長均為1,線段AB、線段EF的端點(diǎn)均在小正方形的頂點(diǎn)上.
(1)在圖中以AB為邊畫Rt△BAC,點(diǎn)C在小正方形的頂點(diǎn)上,使∠BAC=90°,tan∠ACB=;
(2)在(1)的條件下,在圖中畫以EF為邊且面積為3的△DEF,點(diǎn)D在小正方形的頂點(diǎn)上,連接CD、BD,使△BDC是銳角等腰三角形,直接寫出∠DBC的正切值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com