【題目】某段公路經測算發(fā)現(xiàn),勻速行駛的車輛通過該段公路時,所需時間t(h)與行駛速度v(km/h)滿足反比例函數(shù)關系,其圖象為如圖所示的一段曲線.且端點為A(40,1)和B(m,0.5).

(1)求t與v的函數(shù)關系式及m的值;
(2)若該段公路限速50km/h,求通過該路段需要的最短時間和這段公路的長.

【答案】
(1)解:由題意,可設t與v的函數(shù)關系式為t= k v (k≠0),

∵函數(shù)t= 經過點A(40,1),

∴1= ,解得k=40,

∴t與v的函數(shù)關系式為t= ;

把B(m,0.5)代入t= ,

得0.5= ,解得m=80


(2)解:把v=50代入t= ,得t= =0.8,

則通過該路段需要的最短時間是0.8小時,這段公路的長為40km.


【解析】利用圖像尋找一點坐標代入解析式即可;(2)將v=50代入反比例函數(shù)解析式即可.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】游泳是一項深受青少年喜愛的體育活動,學校為了加強學生的安全意識,組織學生觀看了紀實片“孩子,請不要私自下水”,并于觀看后在本校的2000名學生中作了抽樣調查.請根據下面兩個不完整的統(tǒng)計圖回答以下問題:

(1)這次抽樣調查中,共調查了__ __名學生;

(2)補全兩個統(tǒng)計圖;

(3)根據抽樣調查的結果,估算該校2000名學生中大約有多少人“一定會下河游泳”?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(8分)如圖,在ABCD中,BCD=120°,分別延長DC、BC到點E,F(xiàn),使得BCE和CDF都是正三角形.

(1)求證:AE=AF;

(2)求EAF的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知ABC中,A=60°,ACB=40°,DBC邊延長線上一點,BM平分ABC,E為射線BM上一點.若直線CE垂直于ABC的一邊,則BEC=____°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平行四邊形ABCD中,P為對角線BD上任意一點,連接PA、PC,得到△PAB、△PBC、△PCD、△PDA,設它們的面積分別是S1、S2、S3、S4 , 給出如下結論:①S1=S2;②S1+S2=S3;③S1+S3=S2+S4;④若S1S3=S2S4 , 其中正確結論的序號是 . (在橫線上填上你認為所有正確答案的序號)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知∠1=∠2,要使ABDACD,需從下列條件中增加一個,錯誤的選法是(

A.ADB=∠ADCB.B=∠CC.ABACD.DBDC

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線AC∥DFC、E分別在AB、DF上,小華想知道∠ACE∠DEC是否互補,但是他有沒有帶量角器,只帶了一副三角板,于是他想了這樣一個辦法:首先連結CF,再找出CF的中點O,然后連結EO并延長EO和直線AB相交于點B,經過測量,他發(fā)現(xiàn)EOBO,因此他得出結論:∠ACE∠DEC互補,而且他還發(fā)現(xiàn)BCEF

以下是他的想法,請你填上根據.小華是這樣想的:

因為CFBE相交于點O,

根據 得出∠COB∠EOF;

OCF的中點,那么COFO,又已知 EOBO

根據 得出△COB≌△FOE,

根據 得出BCEF,

根據 得出∠BCO∠F,

既然∠BCO∠F,根據 AB∥DF,

既然AB∥DF,根據 得出∠ACE∠DEC互補.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,小明在自家樓頂上的點A處測量建在與小明家樓房同一水平線上鄰居的電梯的高度,測得電梯樓頂部B處的仰角為45°,底部C處的俯角為26°,已知小明家樓房的高度AD=15米,求電梯樓的高度BC(結果精確到0.1米)(參考數(shù)據:sin26°≈0.44,cos26°≈0.90,tan26°≈0.49)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一個安裝有進出水管的30升容器,水管單位時間內進出的水量是一定的,設從某時刻開始的4分鐘內只進水不出水,在隨后的8分鐘內既進水又出水,得到水量y(升)與時間x(分)之間的函數(shù)關系如圖所示.根據圖象信思給出下列說法,其中錯誤的是( 。

A. 每分鐘進水5

B. 每分鐘放水1.25

C. 12分鐘后只放水,不進水,還要8分鐘可以把水放完

D. 若從一開始進出水管同時打開需要24分鐘可以將容器灌滿

查看答案和解析>>

同步練習冊答案