【題目】某段公路經測算發(fā)現(xiàn),勻速行駛的車輛通過該段公路時,所需時間t(h)與行駛速度v(km/h)滿足反比例函數(shù)關系,其圖象為如圖所示的一段曲線.且端點為A(40,1)和B(m,0.5).
(1)求t與v的函數(shù)關系式及m的值;
(2)若該段公路限速50km/h,求通過該路段需要的最短時間和這段公路的長.
科目:初中數(shù)學 來源: 題型:
【題目】游泳是一項深受青少年喜愛的體育活動,學校為了加強學生的安全意識,組織學生觀看了紀實片“孩子,請不要私自下水”,并于觀看后在本校的2000名學生中作了抽樣調查.請根據下面兩個不完整的統(tǒng)計圖回答以下問題:
(1)這次抽樣調查中,共調查了__ __名學生;
(2)補全兩個統(tǒng)計圖;
(3)根據抽樣調查的結果,估算該校2000名學生中大約有多少人“一定會下河游泳”?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(8分)如圖,在ABCD中,∠BCD=120°,分別延長DC、BC到點E,F(xiàn),使得△BCE和△CDF都是正三角形.
(1)求證:AE=AF;
(2)求∠EAF的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知△ABC中,∠A=60°,∠ACB=40°,D為BC邊延長線上一點,BM平分∠ABC,E為射線BM上一點.若直線CE垂直于△ABC的一邊,則∠BEC=____°.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平行四邊形ABCD中,P為對角線BD上任意一點,連接PA、PC,得到△PAB、△PBC、△PCD、△PDA,設它們的面積分別是S1、S2、S3、S4 , 給出如下結論:①S1=S2;②S1+S2=S3;③S1+S3=S2+S4;④若S1S3=S2S4 , 其中正確結論的序號是 . (在橫線上填上你認為所有正確答案的序號)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知∠1=∠2,要使△ABD≌△ACD,需從下列條件中增加一個,錯誤的選法是( )
A.∠ADB=∠ADCB.∠B=∠CC.AB=ACD.DB=DC
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線AC∥DF,C、E分別在AB、DF上,小華想知道∠ACE和∠DEC是否互補,但是他有沒有帶量角器,只帶了一副三角板,于是他想了這樣一個辦法:首先連結CF,再找出CF的中點O,然后連結EO并延長EO和直線AB相交于點B,經過測量,他發(fā)現(xiàn)EO=BO,因此他得出結論:∠ACE和∠DEC互補,而且他還發(fā)現(xiàn)BC=EF.
以下是他的想法,請你填上根據.小華是這樣想的:
因為CF和BE相交于點O,
根據 得出∠COB=∠EOF;
而O是CF的中點,那么CO=FO,又已知 EO=BO,
根據 得出△COB≌△FOE,
根據 得出BC=EF,
根據 得出∠BCO=∠F,
既然∠BCO=∠F,根據 出AB∥DF,
既然AB∥DF,根據 得出∠ACE和∠DEC互補.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,小明在自家樓頂上的點A處測量建在與小明家樓房同一水平線上鄰居的電梯的高度,測得電梯樓頂部B處的仰角為45°,底部C處的俯角為26°,已知小明家樓房的高度AD=15米,求電梯樓的高度BC(結果精確到0.1米)(參考數(shù)據:sin26°≈0.44,cos26°≈0.90,tan26°≈0.49)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一個安裝有進出水管的30升容器,水管單位時間內進出的水量是一定的,設從某時刻開始的4分鐘內只進水不出水,在隨后的8分鐘內既進水又出水,得到水量y(升)與時間x(分)之間的函數(shù)關系如圖所示.根據圖象信思給出下列說法,其中錯誤的是( 。
A. 每分鐘進水5升
B. 每分鐘放水1.25升
C. 若12分鐘后只放水,不進水,還要8分鐘可以把水放完
D. 若從一開始進出水管同時打開需要24分鐘可以將容器灌滿
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com