19.如圖,有一張面積為1的正方形紙片ABCD,M、N分別是AD,BC邊上的中點(diǎn),將點(diǎn)C折疊至MN上,落在P點(diǎn)的位置上,折痕為BQ,連PQ,則PQ的長(zhǎng)為( 。
A.$\frac{1}{2}$B.$\frac{{\sqrt{3}}}{3}$C.$\frac{1}{3}$D.$\frac{{\sqrt{3}}}{2}$

分析 在Rt△PBN中由PB=2BN可求得∠PBN=60°,由翻折的性質(zhì)可求得∠QBC=30°,PQ=CQ,在△BQC中由特殊銳角三角函數(shù)可求得QC=$\frac{\sqrt{3}}{3}$,從而求得PQ的長(zhǎng).

解答 解:∵M(jìn)、N分別是AD,BC邊上的中點(diǎn),
∴∠PNB=90°,NB=$\frac{1}{2}$BP.
∴∠PBN=60°.
由翻折的性質(zhì)可知:∠PBQ=∠CBQ=30°,PQ=CQ.
在Rt△BCQ中,$\frac{QC}{BC}=\frac{\sqrt{3}}{3}$,即$\frac{QC}{1}=\frac{\sqrt{3}}{3}$.
解得:QC=$\frac{\sqrt{3}}{3}$.
∴PQ=$\frac{\sqrt{3}}{3}$.
故選:B.

點(diǎn)評(píng) 本題主要考查的是翻折的性質(zhì)、特殊銳角三角函數(shù)值,根據(jù)題意求得∠CBQ=30°是解題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:2017屆江蘇省東臺(tái)市第四教育聯(lián)盟九年級(jí)下學(xué)期第一次月考數(shù)學(xué)試卷(解析版) 題型:單選題

下列運(yùn)算正確的是( )

A. 3a+2a=a5 B. a2·a3=a6 C. (a+b)(a-b)=a2-b2 D. (a+b)2=a2+b2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2015-2016學(xué)年內(nèi)蒙古巴彥淖爾市臨河區(qū)七年級(jí)下學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:單選題

買鋼筆和鉛筆共30支,其中鋼筆的數(shù)量比鉛筆數(shù)量的2倍少3支.若設(shè)買鋼筆x支,鉛筆y支,根據(jù)題意,可得方程組( ).

A.

B.

C.

D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

7.如圖1,矩形ABCD中,AB=10,AD=8.將矩形ABCD折疊,使得頂點(diǎn)B落在CD邊上的P點(diǎn)處.已知折痕AO與邊BC交于點(diǎn)O,連結(jié)AP、OP、OA.
(1)求OC的長(zhǎng);
(2)若將△PCO沿著射線PA方向平移,設(shè)平移的距離為n(平移距離指點(diǎn)P沿PA方向所經(jīng)過(guò)的線段長(zhǎng)度).當(dāng)點(diǎn)C分別平移到線段PO、AO上時(shí),直接寫出相應(yīng)的n的值;
(3)如圖2,將△PCO繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)一個(gè)角α,記旋轉(zhuǎn)中的△PCO為△P′OC′.在旋轉(zhuǎn)過(guò)程中,設(shè)P′O所在的直線與線段AP交于點(diǎn)Q,與射線AD交于點(diǎn)H.是否存在這樣的Q、H兩點(diǎn),使△AQH為等腰三角形?若存在,求出此時(shí)AQ的長(zhǎng);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.一個(gè)容量為110的樣本最大值是152,最小值是50,取組距為10,則可以分為( 。
A.9組B.10組C.11組D.12組

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

4.解答下列各題:
(1)已知$\frac{a}$=$\frac{3}{2}$,且a+b=10,求a,b的值.
(2)計(jì)算:$\sqrt{12}$sin60°-6tan230°-2cos45°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知一拋物線過(guò)點(diǎn)(-3,0)、(-2,-6),且對(duì)稱軸是x=-1.求該拋物線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

8.如圖,已知在Rt△ACB中,∠C=90°,AC=4cm,BC=3cm,點(diǎn)P由B出發(fā)沿BA方向向點(diǎn)A勻速運(yùn)動(dòng),速度為1cm/s;點(diǎn)Q由A出發(fā)沿AC方向向點(diǎn)C勻速運(yùn)動(dòng),速度為2cm/s;連接PQ.若設(shè)運(yùn)動(dòng)的時(shí)間為t(s)(0<t<2),解答下列問(wèn)題:
(1)當(dāng)0<t<2為何值時(shí),以A,P,Q為頂點(diǎn)的三角形與△ABC相似?
(2)設(shè)△AQP的面積為y(cm2),求y與t之間的函數(shù)關(guān)系式;
(3)當(dāng)t為何值時(shí),△AQP是等腰三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

9.(1)用配方法解方程:x2+4x-1=0
(2)用公式法解方程:3x2-5x-1=0
(3)用因式分解法解方程:4x(2x+1)=3(2x+1)

查看答案和解析>>

同步練習(xí)冊(cè)答案