分析 (1)將P(3,8)代入y=kx+4,求出k的值,即可得到一次函數(shù)的表達(dá)式;
(2)先求出A點(diǎn)坐標(biāo),再利用兩點(diǎn)間的距離公式即可求出AP的長;
(3)先求出B點(diǎn)坐標(biāo),再根據(jù)BC=AP=5以及點(diǎn)C在x軸上,即可求出C點(diǎn)坐標(biāo).
解答 解:(1)由題意,得P(3,8).
將P(3,8)代入y=kx+4,得3k+4=8,
解得k=$\frac{4}{3}$.
所以一次函數(shù)的表達(dá)式為y=$\frac{4}{3}$x+4;
(2)∵y=$\frac{4}{3}$x+4,
∴令x=0,得y=4.
∴A(0,4).
∵P(3,8),
∴AP=$\sqrt{{3}^{2}+(8-4)^{2}}$=5;
(3)∵y=$\frac{4}{3}$x+4,
∴令y=0,得x=-3,
∴B(-3,0),
∵BC=AP=5,點(diǎn)C在x軸上,
∴C(2,0)或(-8,0).
點(diǎn)評 本題考查了待定系數(shù)法求一次函數(shù)解析式,一次函數(shù)圖象上點(diǎn)的坐標(biāo)特征,兩點(diǎn)間的距離公式,難度適中.求出一次函數(shù)解析式是解題的關(guān)鍵.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | B. | C. | D. |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com