【題目】如圖,已知拋物線y=﹣ x2 x+2與x軸交于A、B兩點,與y軸交于點C

(1)求點A,B,C的坐標;
(2)點E是此拋物線上的點,點F是其對稱軸上的點,求以A,B,E,F(xiàn)為頂點的平行四邊形的面積;
(3)此拋物線的對稱軸上是否存在點M,使得△ACM是等腰三角形?若存在,請求出點M的坐標;若不存在,請說明理由.

【答案】
(1)

解:令y=0得﹣ x2 x+2=0,

∴x2+2x﹣8=0,

x=﹣4或2,

∴點A坐標(2,0),點B坐標(﹣4,0),

令x=0,得y=2,

∴點C坐標(0,2)


(2)

解:由圖象可知AB只能為平行四邊形的邊,

∵AB=EF=6,對稱軸x=﹣1,

∴點E的橫坐標為﹣7或5,

∴點E坐標(﹣7,﹣ )或(5,﹣ ),此時點F(﹣1,﹣ ),∴以A,B,E,F(xiàn)為頂點的平行四邊形的面積=6× =


(3)

如圖所示,

①當C為頂點時,CM1=CA,CM2=CA,作M1N⊥OC于N,

在RT△CM1N中,CN= = ,

∴點M1坐標(﹣1,2+ ),點M2坐標(﹣1,2﹣ ).

②當M3為頂點時,∵直線AC解析式為y=﹣x+1,

線段AC的垂直平分線為y=x,

∴點M3坐標為(﹣1,﹣1).

③當點A為頂點的等腰三角形不存在.

綜上所述點M坐標為(﹣1,﹣1)或(﹣1,2+ )或(﹣1.2﹣ ).


【解析】(1)分別令y=0,x=0,即可解決問題.(2)由圖象可知AB只能為平行四邊形的邊,易知點E坐標(﹣7,﹣ )或(5,﹣ ),由此不難解決問題.(3)分A、C、M為頂點三種情形討論,分別求解即可解決問題.本題考查二次函數(shù)綜合題、平行四邊形的判定和性質、勾股定理等知識,解題的關鍵是熟練掌握拋物線與坐標軸交點的求法,學會分類討論的思想,屬于中考壓軸題.
【考點精析】根據(jù)題目的已知條件,利用勾股定理的概念和平行四邊形的判定與性質的相關知識可以得到問題的答案,需要掌握直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2;若一直線過平行四邊形兩對角線的交點,則這條直線被一組對邊截下的線段以對角線的交點為中點,并且這兩條直線二等分此平行四邊形的面積.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,二次函數(shù)y=ax2+bx+c的圖象與y軸正半軸相交,其頂點坐標為( ,1),下列結論:①ac<0;②a+b=0;③4ac﹣b2=4a;④a+b+c<0.其中正確結論的個數(shù)是(
A.1
B.2
C.3
D.4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD中,AB∥CD,AB≠CD,BD=AC.

(1)求證:AD=BC;
(2)若E、F、G、H分別是AB、CD、AC、BD的中點,求證:線段EF與線段GH互相垂直平分.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在梯形ABCD中,AD//BC, ∠B=70°∠C=40°,DE//AB交BC于點E.若AD=3,BC=10,則CD的長是( )

A.7
B.10
C.13
D.14

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】現(xiàn)有一個正六邊形的紙片,該紙片的邊長為20cm,張萌想用一張圓形紙片將該正六邊形紙片完全覆蓋住,則圓形紙片的直徑不能小于 cm.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】直線l1∥l2∥l3 , 且l1與l2的距離為1,l2與l3的距離為3,把一塊含有45°角的直角三角形如圖放置,頂點A,B,C恰好分別落在三條直線上,AC與直線l2交于點D,則線段BD的長度為(  )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB是半圓O的直徑,C是半圓O上一點,弦AD平分∠BAC,交BC于點E,若AB=6,AD=5,則DE的長為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,已知拋物線y=x2+bx+c過A,B,C三點,點A的坐標是(3,0),點C的坐標是(0,﹣3),動點P在拋物線上.

(1)b= , c= , 點B的坐標為;(直接填寫結果)
(2)是否存在點P,使得△ACP是以AC為直角邊的直角三角形?若存在,求出所有符合條件的點P的坐標;若不存在,說明理由;
(3)過動點P作PE垂直y軸于點E,交直線AC于點D,過點D作x軸的垂線.垂足為F,連接EF,當線段EF的長度最短時,求出點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】若一三角形的三邊長分別為5、12、13,則此三角形的內(nèi)切圓半徑為

查看答案和解析>>

同步練習冊答案