【題目】如圖所示,平行四邊形ABCD和平行四邊形CDEF有公共邊CD,邊ABEF在同一條直線(xiàn)上,ACCDAC=AF,過(guò)點(diǎn)AAHBCCF于點(diǎn)G,交BC于點(diǎn)H,連接EG

1)若AE=2,CD=5,則BCF的面積為 ;BCF的周長(zhǎng)為

2)求證:BC=AG+EG

【答案】13,;(2)見(jiàn)解析

【解析】

1)根據(jù)平行和垂直的特點(diǎn)求出BF,AF,再根據(jù)勾股定理求出CD,根據(jù)FP與BA的比值求出面積,再根據(jù)勾股定理求CF,BC即可得到周長(zhǎng).

(2)在AD上截取AM=AG,連接CM,證FAGCAM;證EFGDCM

解:(1)面積為3;周長(zhǎng)為

四邊形ABCD和四邊形CDEF都是平行四邊形,

EF=CD,AB=CD,ABCD

∴EF=AB=CD=5

∴AE=EF-AE=5-2=3

∴BF=5-3=2

過(guò)FFP⊥BC

FP:AH=BF:AB=2:5,

,

AC⊥CD,ABCD,

AB⊥AC,即∠BAC=90°

AC=AF=3,

CF= ,BC=

BCF的面積為3,BCF周長(zhǎng)為

2)在AD上截取AM=AG,連接CM,

∵四ABCD是平行四邊形,

ADBC,AD=BC

∵AH⊥BC

∴AD⊥AH

∴∠DAH=90°

∵∠BAC=90°

∴∠DAH=∠BAC

∴∠DAH-∠CAH =∠BAC-∠CAH

∴∠BAH=∠CAD

∵AF=AC

∴△FAG≌△CAM

∴FG=CM,∠ACM=∠AFG

∵四CDEF是平行四邊形,

EFCD,EF=CD,

∴∠DCF+∠AFC=180°,

∵AF=AC, ∠BAC=90°,

∴∠AFC=∠ACF=45°,

∴∠DCF=180°-∠AFC=135°,

∴∠ACM=∠AFG=45°,

∴∠DCM=∠FCD-∠ACF-∠ACM=45°,

∴∠AFG=∠DCM,

∴△EFG≌△DCM,

∴EG=DM,

∵AD=AM+DM,

∴AD=AG+EG,

∵AD=BC,

∴BC=AG+EG.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】興發(fā)服裝店老板用4500元購(gòu)進(jìn)一批某款T恤衫,由于深受顧客喜愛(ài),很快售完,老板又用4950元購(gòu)進(jìn)第二批該款式T恤衫,所購(gòu)數(shù)量與第一批相同,但每件進(jìn)價(jià)比第一批多了9元.

1)第一批該款式T恤衫每件進(jìn)價(jià)是多少元?

2)老板以每件120元的價(jià)格銷(xiāo)售該款式T恤衫,當(dāng)?shù)诙?/span>T恤衫售出時(shí),出現(xiàn)了滯銷(xiāo),于是決定降價(jià)促銷(xiāo),若要使第二批的銷(xiāo)售利潤(rùn)不低于650元,剩余的T恤衫每件售價(jià)至少要多少元?(利潤(rùn)=售價(jià)進(jìn)價(jià))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小東同學(xué)根據(jù)函數(shù)的學(xué)習(xí)經(jīng)驗(yàn),對(duì)函數(shù)y 進(jìn)行了探究,下面是他的探究過(guò)程:

1)已知x-3時(shí) 0;x1 時(shí) 0,化簡(jiǎn):

①當(dāng)x-3時(shí),y ;

②當(dāng)-3≤x≤1時(shí),y ;

③當(dāng)x1時(shí),y

2)在平面直角坐標(biāo)系中畫(huà)出y|x1|+|x+3|的圖象,根據(jù)圖象,寫(xiě)出該函數(shù)的一條性質(zhì):  ;

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某工廠(chǎng)計(jì)劃生產(chǎn)兩種產(chǎn)品共60件,需購(gòu)買(mǎi)甲、乙兩種材料.生產(chǎn)一件產(chǎn)品需甲種材料4千克;生產(chǎn)一件產(chǎn)品需甲、乙兩種材料各3千克.經(jīng)測(cè)算,購(gòu)買(mǎi)甲、乙兩種材料各1千克共需資金60元;購(gòu)買(mǎi)甲種材料2千克和乙種材料3千克共需資金155.

1)甲、乙兩種材料每千克分別是多少元?

2)現(xiàn)工廠(chǎng)用于購(gòu)買(mǎi)甲、乙兩種材料的資金不超過(guò)9900元,且生產(chǎn)產(chǎn)品不少于38件,問(wèn)符合生產(chǎn)條件的生產(chǎn)方案有哪幾種?

3)在(2)的條件下,若生產(chǎn)一件產(chǎn)品需加工費(fèi)40元,生產(chǎn)一件產(chǎn)品需加工費(fèi)50元,應(yīng)選擇哪種生產(chǎn)方案,使生產(chǎn)這60件產(chǎn)品的成本最低(成本=材料費(fèi)+加工費(fèi))?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】不透明的口袋里裝有白、黃、藍(lán)三種顏色的乒乓球(除顏色外其余都相同),其中白球有2個(gè),黃球有1個(gè),現(xiàn)從中任意摸出一個(gè)是白球的概率為

1)試求袋中藍(lán)球的個(gè)數(shù);

2)第一次任意摸一個(gè)球(不放回),第二次再摸一個(gè)球,請(qǐng)用畫(huà)樹(shù)狀圖或列表格法,求兩次摸到都是白球的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,BD是△ABC的角平分線(xiàn),過(guò)點(diǎn)DDEBCAB于點(diǎn)E, DFABBC于點(diǎn)F

1)求證:四邊形BEDF是菱形

2)如果∠A=80°,∠C=30°,求∠BDE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】ABCD的兩條對(duì)角線(xiàn)AC,BD交于點(diǎn)O,點(diǎn)ECD的中點(diǎn),△DOE的面積為l0cm2,則△ABD的面積為(

A.15cm2B.20cm2C.30cm2D.40cm2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知關(guān)于x的方程

(1)求證:不論k取什么實(shí)數(shù)值,這個(gè)方程總有實(shí)數(shù)根;

(2)若等腰三角形ABC的一邊長(zhǎng)為,另兩邊的長(zhǎng)b、c恰好是這個(gè)方程的兩個(gè)根,求△ABC的周長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB為⊙O的直徑,劣弧BC=劣弧BE,BD∥CE,連接AE并延長(zhǎng)交BDD

求證:1AC=AE

2AB2=ACAD

查看答案和解析>>

同步練習(xí)冊(cè)答案