【題目】用反證法證明命題:在一個三角形中,至少有一個內(nèi)角不大于60°.證明的第一步是(

A.假設(shè)三個內(nèi)角都不大于60°

B.假設(shè)三個內(nèi)角都大于60°

C.假設(shè)三個內(nèi)角至多有一個大于60°

D.假設(shè)三個內(nèi)角至多有兩個大于60°

【答案】B

【解析】

試題分析:用反證法證明在一個三角形中,至少有一個內(nèi)角不大于60°,

第一步應(yīng)假設(shè)結(jié)論不成立,

即假設(shè)三個內(nèi)角都大于60°.

故選:B.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知點A(2,3)AC⊥x軸于C,則點C的坐標(biāo)為( ).

A. (0,3) B. (30) C. (0,2) D. (2,0)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,P為平行四邊形ABCDAD上一點,E、F分別為PBPC的中點,△PEF、△PDC△PAB的面積分別為S、S1S2,若S=2,則S1+S2=( )

A. 4 B. 6 C. 8 D. 不能確定

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若△ABC的三邊長a,b,c滿足a2+b2+c2+50=6a+8b+10c,則△ABC的形狀是什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,有一RtABC,且A(﹣1,3),B(﹣3,﹣1),C(﹣3,3),已知A1AC1是由ABC旋轉(zhuǎn)得到的.

(1)請寫出旋轉(zhuǎn)中心的坐標(biāo)是 ,旋轉(zhuǎn)角是 度;

(2)以(1)中的旋轉(zhuǎn)中心為中心,畫出A1AC1順時針旋轉(zhuǎn)90°的三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個一次函數(shù)的圖象平行于直線y=-2x,且過點A(-4,2),求這個函數(shù)的表達(dá)式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下列材料:關(guān)于x的方程x2﹣3x+1=0(x≠0)

方程兩邊同時乘以得:x﹣3+=0即x+=3

(x+2=x2++2x=x2++2

x2+=(x+2﹣2=32﹣2=7

根據(jù)以上材料,解答下列問題:

(1)x2﹣4x+1=0(x≠0),則x2+= ,x4+=

(2)2x2﹣7x+2=0(x≠0),求x3+的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系xOy中,拋物線y=﹣x2+x+4與x軸交于A,B兩點,與y軸交于點C連接AC,BC.

(1)求ACO的正弦值.

(2)如圖1,D為第一象限內(nèi)拋物線上一點,記點D橫坐標(biāo)為m,作DEAC交BC于點E,DHy軸交于BC于點H,請用含m的代數(shù)式表示線段DE的長,并求出當(dāng)CH:BH=2:1時線段DE的長.

(3)如圖2,P為x軸上一動點(P不與點A、B重合),作PMBC交直線AC于點M,連接CP,是否存在點P使SCPM=2?若存在,請直接寫出點P的坐標(biāo),若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】工匠制作某種金屬工具要進(jìn)行材料煅燒和鍛造兩個工序,即需要將材料燒到800,然后停止煅燒進(jìn)行鍛造操作,經(jīng)過8min時,材料溫度降為600煅燒時溫度y與時間xmin成一次函數(shù)關(guān)系;鍛造時,溫度y與時間xmin成反比例函數(shù)關(guān)系如圖).已知該材料初始溫度是32

1分別求出材料煅燒和鍛造時y與x的函數(shù)關(guān)系式,并且寫出自變量x的取值范圍;

2根據(jù)工藝要求,當(dāng)材料溫度低于480時,須停止操作那么鍛造的操作時間有多長?

查看答案和解析>>

同步練習(xí)冊答案